+0  
 
0
28
1
avatar

1. We have two geometric sequences of positive real numbers: $$6,a,b\text{ and }\frac{1}{b},a,54$$Solve for $a$.

2. An infinite geometric series has a first term of $12$ and a second term of $4.$ A second infinite geometric series has the same first term of $12,$ a second term of $4+n,$ and a sum of four times that of the first series. Find the value of $n.$

Guest May 6, 2018
Sort: 

1+0 Answers

 #1
avatar
+1

2)

4/12 = 1/3 Common ratio of the first GS

Sum = F / [1 - R], where F= First term, R = Common ratio

Sum =12/ [1 - 1/3]

Sum =12 / (2/3)

Sum = 12 x 3/2

Sum = 36/2

Sum = 18 - Sum of the first GS

 

18 x 4 = 72 - Sum of the second GS

72 = 12 / [1 - R]     divide both sides by 12

6 = 1 / [1 - R]         cross multiply

6 [1 - R] = 1           divide both sides by 6

[1 - R] = 1/6           subtract 1 from both sides

- R = 1/6 - 1

- R = - 5/6             Multiply both sides by -1

R = 5/6 - Common ratio of the second GS

12 x 5/6 = 60 / 6 =10 - this is the 2nd term of the second GS

10 - 4 = 6 value of n of the 2nd term of the second GS.

 

1) Sorry, Can't read the LaTex of your first question.

Guest May 6, 2018

21 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy