+0  
 
+1
41
1
avatar

Need help on this question please

Guest May 14, 2018
Sort: 

1+0 Answers

 #1
avatar+19376 
+2

Need help on this question please

 

\(\text{Let $\vec{OA} = \vec{a}$ } \\ \text{Let $\vec{OB} = \vec{b}$ } \\ \text{Let $\vec{OM} = \frac12\vec{OB} = \frac12 \vec{b}$ } \\ \text{Let $\vec{AP} = k\vec{AB} $ } \)

 

\(\begin{array}{|rcll|} \hline AN = 2\cdot OA \quad & \Rightarrow & \quad \vec{AN} = 2\vec{OA} \\ & & \quad \vec{AN} = 2\vec{a} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \vec{ON} &=& \vec{OA} + \vec{AN} \\ \vec{ON} &=& \vec{a} + 2\vec{a} \\ \vec{ON} &=& 3\vec{a} \\ \hline \end{array} \)

 

\(\vec{AB}=\ ?\)

\(\begin{array}{|rcll|} \hline \vec{AB} &=& \vec{OB} - \vec{OA} \\ \mathbf{\vec{AB}} & \mathbf{=} & \mathbf{\vec{b} - \vec{a}} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline \vec{AP} &=& k\vec{AB} \\ \mathbf{\vec{AP}} & \mathbf{=} & \mathbf{k(\vec{b}-\vec{a})} \\ \hline \end{array}\)


\(\vec{MN}=\ ?\)

\(\begin{array}{|rcll|} \hline \vec{MN} &=& \vec{ON}-\vec{OM} \\ \mathbf{\vec{MN}} & \mathbf{=} & \mathbf{3\vec{a}-\frac12\vec{b}} \\ \hline \end{array}\)


\(\vec{MP}=\ ?\)

\(\begin{array}{|rcll|} \hline \vec{MP} &=& \vec{OA} + \vec{AP} - \vec{OM} \\ \vec{MP} &=& \vec{a} + k(\vec{b}-\vec{a}) - \frac12 \vec{b} \\ \vec{MP} &=& \vec{a}-k\vec{a} + k\vec{b} - \frac12 \vec{b} \\ \mathbf{\vec{MP}} & \mathbf{=} & \mathbf{ \vec{a}(1-k) +\vec{b}(k-\frac12) } \\ \hline \end{array}\)

 

\(k=\ ?\)

\(\begin{array}{|rclrcl|} \hline \vec{OA} + \vec{AP} &=& \vec{OM} + \vec{MP} \\ \vec{a} + k(\vec{b}-\vec{a}) &=& \frac12 \vec{b} + \lambda\vec{MN} \quad & | \quad \vec{MN} = 3\vec{a}-\frac12\vec{b} \\ \vec{a} + k(\vec{b}-\vec{a}) &=& \frac12 \vec{b} + \lambda(3\vec{a}-\frac12\vec{b}) \\ \vec{a} + k\vec{b}-k\vec{a} &=& \frac12 \vec{b} + 3\lambda\vec{a}-\frac{\lambda}{2}\vec{b} \\ \vec{a} -k\vec{a} - 3\lambda\vec{a} &=& \frac12 \vec{b} -\frac{\lambda}{2}\vec{b} - k\vec{b} \\ \vec{a}(\underbrace{1 -k - 3\lambda}_{=0}) &=& \vec{b}(\underbrace{\frac12 -\frac{\lambda}{2} - k}_{=0}) \\ \frac12 -\frac{\lambda}{2} - k &=& 0 \quad | \cdot 6 & 1 -k - 3\lambda &=& 0 \\ 3 -3\lambda - 6k &=& 0 & 3\lambda &=& 1 -k \\ 3 -(1 -k ) - 6k &=& 0 \\ 3 - 1 +k - 6k &=& 0 \\ 2 - 5k &=& 0 \\ 5k &=& 2 \\ \mathbf{k} & \mathbf{=} & \mathbf{\dfrac25 } \\ \hline \end{array}\)

 

 

laugh

heureka  May 15, 2018

6 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy