+0  
 
+1
107
1
avatar

Need help on this question please

Guest May 14, 2018
 #1
avatar+20105 
+2

Need help on this question please

 

\(\text{Let $\vec{OA} = \vec{a}$ } \\ \text{Let $\vec{OB} = \vec{b}$ } \\ \text{Let $\vec{OM} = \frac12\vec{OB} = \frac12 \vec{b}$ } \\ \text{Let $\vec{AP} = k\vec{AB} $ } \)

 

\(\begin{array}{|rcll|} \hline AN = 2\cdot OA \quad & \Rightarrow & \quad \vec{AN} = 2\vec{OA} \\ & & \quad \vec{AN} = 2\vec{a} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \vec{ON} &=& \vec{OA} + \vec{AN} \\ \vec{ON} &=& \vec{a} + 2\vec{a} \\ \vec{ON} &=& 3\vec{a} \\ \hline \end{array} \)

 

\(\vec{AB}=\ ?\)

\(\begin{array}{|rcll|} \hline \vec{AB} &=& \vec{OB} - \vec{OA} \\ \mathbf{\vec{AB}} & \mathbf{=} & \mathbf{\vec{b} - \vec{a}} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline \vec{AP} &=& k\vec{AB} \\ \mathbf{\vec{AP}} & \mathbf{=} & \mathbf{k(\vec{b}-\vec{a})} \\ \hline \end{array}\)


\(\vec{MN}=\ ?\)

\(\begin{array}{|rcll|} \hline \vec{MN} &=& \vec{ON}-\vec{OM} \\ \mathbf{\vec{MN}} & \mathbf{=} & \mathbf{3\vec{a}-\frac12\vec{b}} \\ \hline \end{array}\)


\(\vec{MP}=\ ?\)

\(\begin{array}{|rcll|} \hline \vec{MP} &=& \vec{OA} + \vec{AP} - \vec{OM} \\ \vec{MP} &=& \vec{a} + k(\vec{b}-\vec{a}) - \frac12 \vec{b} \\ \vec{MP} &=& \vec{a}-k\vec{a} + k\vec{b} - \frac12 \vec{b} \\ \mathbf{\vec{MP}} & \mathbf{=} & \mathbf{ \vec{a}(1-k) +\vec{b}(k-\frac12) } \\ \hline \end{array}\)

 

\(k=\ ?\)

\(\begin{array}{|rclrcl|} \hline \vec{OA} + \vec{AP} &=& \vec{OM} + \vec{MP} \\ \vec{a} + k(\vec{b}-\vec{a}) &=& \frac12 \vec{b} + \lambda\vec{MN} \quad & | \quad \vec{MN} = 3\vec{a}-\frac12\vec{b} \\ \vec{a} + k(\vec{b}-\vec{a}) &=& \frac12 \vec{b} + \lambda(3\vec{a}-\frac12\vec{b}) \\ \vec{a} + k\vec{b}-k\vec{a} &=& \frac12 \vec{b} + 3\lambda\vec{a}-\frac{\lambda}{2}\vec{b} \\ \vec{a} -k\vec{a} - 3\lambda\vec{a} &=& \frac12 \vec{b} -\frac{\lambda}{2}\vec{b} - k\vec{b} \\ \vec{a}(\underbrace{1 -k - 3\lambda}_{=0}) &=& \vec{b}(\underbrace{\frac12 -\frac{\lambda}{2} - k}_{=0}) \\ \frac12 -\frac{\lambda}{2} - k &=& 0 \quad | \cdot 6 & 1 -k - 3\lambda &=& 0 \\ 3 -3\lambda - 6k &=& 0 & 3\lambda &=& 1 -k \\ 3 -(1 -k ) - 6k &=& 0 \\ 3 - 1 +k - 6k &=& 0 \\ 2 - 5k &=& 0 \\ 5k &=& 2 \\ \mathbf{k} & \mathbf{=} & \mathbf{\dfrac25 } \\ \hline \end{array}\)

 

 

laugh

heureka  May 15, 2018

30 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.