Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+11
1878
5
avatar+136 

If z is a complex number satisfying z + 1/z =1, calculate z^10+ 1/z^10. 
 

 Jun 26, 2020
 #1
avatar+26396 
+3

If

z is a complex number satisfying z+1z=1, calculate z10+1z10

 

(z+1z)2=z2+1z2+2zz12=z2+1z2+2z2+1z2=12z2+1z2=1(z2+1z2)(z+1z)=z3+1z3+z+1z(1)1=z3+1z3+1z3+1z3=11z3+1z3=2(z2+1z2)(z3+1z3)=z5+1z5+z+1z(1)(2)=z5+1z5+1z5+1z5=21z5+1z5=1(z5+1z5)2=z10+1z10+2z5z512=z10+1z10+2z10+1z10=12z10+1z10=1

 

edited: Thank you Alan, thank you MaxWong

 

also see: https://web2.0calc.com/questions/if-z-is-a-complete-number-satisfying

 

laugh

 Jun 26, 2020
edited by heureka  Jun 26, 2020
edited by heureka  Jun 29, 2020
edited by heureka  Jun 29, 2020
edited by heureka  Jun 29, 2020
 #3
avatar+9675 
+5

heureka:

 

(z2+1z2)(z5+1z5)=z7+1z7+z3+1z3

MaxWong  Jun 26, 2020
 #5
avatar+26396 
+4

Thank you, MaxWong

 

laugh

heureka  Jun 29, 2020
 #2
avatar+9675 
+4

An interesting theorem: If z+1z=2cosα, then zn+1zn=2cosnα for positive integers n and real α.

 

(If you don't like to read proofs, then you can jump to the point where I marked "END OF PROOF".)

 

Proof of the theorem:

We use strong induction.

 

Base case #1 : n = 1.

Substituting n = 1 and checking shows that base case #1 is true.

 

Base case #2 : n = 2.

z2+1z2=(z+1z)22=(2cosα)22=2(2cos2α1)=2cos2α

So base case #2 is true.

 

Inductive step: Assume zt+1zt=2costα and zt1+1zt1=2cos(t1)α for some positive integer t.

zt+1+1zt+1=(zt+1zt)(z+1z)(zt1+1zt1)=2costα2cosα2cos(t1)αBy product to sum formula:=2(cos(t+1)α+cos(t1)α)2cos(t1)α=2cos(t+1)α

Therefore by principles of mathematical induction, the proposition is true.

 

-------------------------------------------------------------------------(END OF PROOF)-------------------------------------------------------------------------

 

Back to the problem. Using the theorem I mentioned above, and substituting α=60 into the formula,

 

z10+1z10=2cos(1060)=2cos(600)=2cos240=1

 Jun 26, 2020
edited by MaxWong  Jun 26, 2020
 #4
avatar+136 
+18

Thank you so much! 

 Jun 27, 2020

1 Online Users

avatar