direction angle = φ
magnitude = m
→F1=−100⋅(sin(25∘)cos(25∘))→F1=−200⋅(sin(80∘)cos(80∘))→F=→F1+→F2→F=−100⋅(sin(25∘)cos(25∘))−200⋅(sin(80∘)cos(80∘))→F=−[(100⋅sin(25∘)+200⋅sin(80∘)100⋅cos(25∘)+200⋅cos(80∘))]→F=−[(100⋅0.42261826174+200⋅0.98480775301100⋅0.90630778704+200⋅0.17364817767)]→F=−[(42.2618261741+196.96155060290.6307787037+34.7296355334)]→F=−[(239.223376777125.360414237)]tan(φ)=239.223376777125.360414237φ=62.3440776108∘m=√239.2233767772+125.3604142372m=270.079724256→F=−m⋅(sin(φ)cos(φ))→F=−270.079724256⋅(sin(62.3440776108∘)cos(62.3440776108∘))
The magnitude is 270 pounds.
The direction is N62.3∘E