We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
51
2
avatar

Consider a convex quadrilateral with vertices at  and  and on each side draw a square lying outside the given quadrilateral, as in the picture below. Let  and  be the centers of those squares:

 Sep 14, 2019
 #1
avatar+1533 
+2

where is the picture? 

 

 

SO much information is missing!

 Sep 14, 2019
 #2
avatar
0

[asy]
size(220);
import TrigMacros;
rr_cartesian_axes(-3,8,-2,8,complexplane=true,usegrid = false);
pair A,B,C,D;
A = (2,1.5);
B= (4,1.8);
C = (5.3,3);
D = (3,5.3);
draw(A--B--C--D--A);
draw(A--(A + rotate(-90)*(B-A))--(B + rotate(90)*(A-B))--B);
draw(B--(B + rotate(-90)*(C-B))--(C + rotate(90)*(B-C))--C);
draw(C--(C + rotate(-90)*(D-C))--(D + rotate(90)*(C-D))--D);
draw(D--(D + rotate(-90)*(A-D))--(A + rotate(90)*(D-A))--A);
pair WW = (B + (A + rotate(-90)*(B-A)))/2;
dot(WW);
pair X = (C + (B + rotate(-90)*(C-B)))/2;
dot(X);
pair Y = (D + (C + rotate(-90)*(D-C)))/2;
dot(Y);
pair Z = (A + (D + rotate(-90)*(A-D)))/2;
dot(Z);
//draw(WW--Y,red);
//draw(X--Z,blue);
dot("$a$",A,SW);
dot("$b$",B,2*E);
dot("$c$",C,E);
dot("$d$",D,NNW);
dot("$p$",WW,E);
dot("$q$",X,S);
dot("$r$",Y,N);
dot("$s$",Z,S);
[/asy]

Guest Sep 14, 2019

5 Online Users