+0  
 
+1
618
3
avatar

Here is the problem:

 

What is the largest integer \(n\) such that \((1 + 2 + 3 + \cdots+ n)^2 < 1^3 + 2^3 + \cdots+ 7^3?\)

 

Thank you!

 Nov 30, 2018
 #1
avatar+1252 
0

Hopefully you know that \(1^3+2^3+3^3+...+n^3=(1+2+3+...+n)^2\).

Therefore, we see that \(n=7\) when the equations are equal so \(n=6\)

 

You are very welcome!

:P

 Nov 30, 2018
 #2
avatar
+1

Awesome! I totally forgot about that XD

 

thx again!

Guest Nov 30, 2018
 #3
avatar+1252 
-1

Lol it's fine, happy to help!

CoolStuffYT  Dec 1, 2018

3 Online Users

avatar