+0  
 
0
270
4
avatar

Given the two vectors below, find the angle between them. Round answers to the nearest hundredth. v=⟨−13,−1⟩v=⟨−13,−1⟩ w=⟨19,−3.1⟩

Guest Mar 28, 2017
 #1
avatar+87293 
+1

cos (theta)  =   [ u dot v ] /  [ length of u * length of v ]

 

u  = (-13, -1)   v   = (19, -3.1)

 

u dot v  =  ( -13 * 19  +   -1 * -3.1)  =  (-247 + 3.1)  = -243.9

 

Length of u   =   sqrt[ 13^2 + 1^1) =  sqrt (170)

Length of v  = sqrt ( 19^2 + 3.1^2)   = sqrt (370.61)

 

 

cos (theta  =   -243.9 / [ sqrt (170) * sqrt ( 370.61) ]

 

arccos  [ -243.9 / [ sqrt (170) * sqrt (370.61) ] = theta  ≈  166.33°

 

 

cool cool cool

CPhill  Mar 28, 2017
 #2
avatar+87293 
0

Sorry.....the vectors should be noted as v and w, not u and v....but......the the same procedure holds

 

 

 

cool cool cool

CPhill  Mar 28, 2017
 #4
avatar+19599 
+4

Given the two vectors below, find the angle between them. Round answers to the nearest hundredth.

v=⟨−13,−1⟩ w=⟨19,−3.1⟩

 

\(\vec{v} = \binom{-13}{-1} \\ \vec{w} = \binom{19}{-3.1}\)

 

\(\begin{array}{|rcll|} \hline \tan(\varphi) &=& \frac{ |\vec{v} \times \vec{w}| } {\vec{v} \cdot \vec{w}} \\ &=& \frac{ \left|\binom{-13}{-1} \times \binom{19}{-3.1} \right| } {\binom{-13}{-1} \cdot \binom{19}{-3.1} } \\ &=& \frac{ (-13)\cdot(-3.1)-(-1)\cdot 19 } {(-13)\cdot 19 + (-1)\cdot(-3.1) } \\ &=& \frac{ 40.3+19 } {-247 + 3.1 } \\ &=& \frac{ 59.3 } {-243.9 } \quad & | \quad \frac{+}{-}\ \text{Quadrant }\ II. \\ &=& -\frac{ 59.3 } {243.9 } \\ \tan(\varphi) &=& -0.24313243132 \\ \varphi &=& \arctan( -0.24313243132 ) + 180^{\circ} \\ &=& -13.6653125958+ 180^{\circ} \\ \varphi &=& 166.334687404^{\circ} \\ \hline \end{array} \)

 

The angle between \(\vec{v}\) and \(\vec{w} \) is \(166.33^{\circ}\)

 

laugh

heureka  Mar 28, 2017

7 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.