Thanks guest,
Here is a neat way to do it.
\(3*3^2*3^3*...*3^{43}*3^{44}*3^{45}\mod(11)\\ \text{Lets look for a pattern}\\ 3^1=3\\ 3^2=9\mod(11)=-2\mod(11)\\ 3^3=-2*3\mod(11)=-6\mod(11)=5\mod(11)\\ 3^4=5*3\mod(11)=4\mod(11)\\ 3^5=4*3\mod(11)=1\mod(11)\\ 3^6=1*3\mod(11)=3\mod(11)\\ \text{The pattern has started to repeat.} \)
there is 45 terms, 5*9 =45 so I will have to rasie the procuct to a power of 9
so I have
(3*-2*5*4*1) ^9 mod(11)
=(-120)^9 mod(11)
=(-121+1)^9 mod(11)
=(1)^9 mod(11)
=1 mod(11)
LaTex
3*3^2*3^3*...*3^{43}*3^{44}*3^{45}\mod(11)\\
\text{Lets look for a pattern}\\
3^1=3\\
3^2=9\mod(11)=-2\mod(11)\\
3^3=-2*3\mod(11)=-6\mod(11)=5\mod(11)\\
3^4=5*3\mod(11)=4\mod(11)\\
3^5=4*3\mod(11)=1\mod(11)\\
3^6=1*3\mod(11)=3\mod(11)\\
\text{The pattern has started to repeat.}