+0  
 
0
70
2
avatar+67 

If the polynomial x^2+bx+c has exactly one real root and b=c+1, find the value of the product of all possible values of c.

isthebest123  Sep 5, 2018
 #1
avatar+67 
+1

never mind i found the answer its 1 btw

isthebest123  Sep 5, 2018
 #2
avatar+91213 
+1

x^2+bx +c   ...  b  = c + 1  ....so....

 

x^2 + (c + 1)x + c

 

If this has one real root, the discriminant  = 0

 

So

 

(c + 1)^2  - 4(1)(c)  = 0  simplify

 

c^2 + 2c + 1  - 4c   = 0

 

c^2 - 2c + 1  = 0    this factors as

 

(c - 1)^2  = 0      take the square root

 

c - 1  = 0    ⇒   c  =  1

 

 

cool cool cool

CPhill  Sep 6, 2018

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.