+0  
 
0
513
2
avatar

Need to find x. .5(1+e)^(-4.787+1.55x)=e^(-4.787+1.55x)

Guest Nov 18, 2014

Best Answer 

 #2
avatar+94088 
+5

$$\\0.5(1+e)^{-4.787+1.55x}=e^{-4.787+1.55x}\\\\
$let $t=-4.787+1.55x\\\\
0.5(1+e)^{t}=e^{t}\\\\
ln(0.5(1+e)^{t})=ln(e^{t})\\\\
ln(0.5)+ln((1+e)^{t})=ln(e^{t})\\\\
ln(0.5)+tln(1+e)=t\\\\
ln(0.5)=t-tln(1+e)\\\\
t=ln(0.5)\\\\
t=\frac{ln(0.5)}{(1-ln(1+e))}\\\\
-4.787+1.55x=\frac{ln(0.5)}{(1-ln(1+e))}\\\\
1.55x=\frac{ln(0.5)}{(1-ln(1+e))}+4.787\\\\$$

 

$$\\x=\left[\frac{ln(0.5)}{(1-ln(1+e))}+4.787\right]/1.55\\\\$$

Melody  Nov 19, 2014
 #1
avatar+7188 
0

$${\mathtt{5}}{\mathtt{\,\times\,}}{\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{e}}\right)}^{\left({\mathtt{\,-\,}}{\mathtt{4.787}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1.55}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)} = {{\mathtt{e}}}^{\left({\mathtt{\,-\,}}{\mathtt{4.787}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1.55}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)} \Rightarrow {{\mathtt{e}}}^{\left({\frac{\left({\mathtt{1\,550}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{4\,787}}\right)}{{\mathtt{1\,000}}}}\right)} = {\mathtt{5}}{\mathtt{\,\times\,}}{\left({\mathtt{e}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}^{\left({\frac{\left({\mathtt{1\,550}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{4\,787}}\right)}{{\mathtt{1\,000}}}}\right)} \Rightarrow {{\mathtt{e}}}^{\left({\frac{\left({\mathtt{1\,550}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{4\,787}}\right)}{{\mathtt{1\,000}}}}\right)} = {\mathtt{5}}{\mathtt{\,\times\,}}{\left({\mathtt{e}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}^{\left({\frac{\left({\mathtt{1\,550}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{4\,787}}\right)}{{\mathtt{1\,000}}}}\right)}$$

happy7  Nov 18, 2014
 #2
avatar+94088 
+5
Best Answer

$$\\0.5(1+e)^{-4.787+1.55x}=e^{-4.787+1.55x}\\\\
$let $t=-4.787+1.55x\\\\
0.5(1+e)^{t}=e^{t}\\\\
ln(0.5(1+e)^{t})=ln(e^{t})\\\\
ln(0.5)+ln((1+e)^{t})=ln(e^{t})\\\\
ln(0.5)+tln(1+e)=t\\\\
ln(0.5)=t-tln(1+e)\\\\
t=ln(0.5)\\\\
t=\frac{ln(0.5)}{(1-ln(1+e))}\\\\
-4.787+1.55x=\frac{ln(0.5)}{(1-ln(1+e))}\\\\
1.55x=\frac{ln(0.5)}{(1-ln(1+e))}+4.787\\\\$$

 

$$\\x=\left[\frac{ln(0.5)}{(1-ln(1+e))}+4.787\right]/1.55\\\\$$

Melody  Nov 19, 2014

30 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.