Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1140
2
avatar

Need to find x. .5(1+e)^(-4.787+1.55x)=e^(-4.787+1.55x)

 Nov 18, 2014

Best Answer 

 #2
avatar+118703 
+5

0.5(1+e)4.787+1.55x=e4.787+1.55x$let$t=4.787+1.55x0.5(1+e)t=etln(0.5(1+e)t)=ln(et)ln(0.5)+ln((1+e)t)=ln(et)ln(0.5)+tln(1+e)=tln(0.5)=ttln(1+e)t=ln(0.5)t=ln(0.5)(1ln(1+e))4.787+1.55x=ln(0.5)(1ln(1+e))1.55x=ln(0.5)(1ln(1+e))+4.787

 

x=[ln(0.5)(1ln(1+e))+4.787]/1.55

.
 Nov 19, 2014
 #1
avatar+7188 
0

5×(1+e)(4.787+1.55×x)=e(4.787+1.55×x)e((1550×x4787)1000)=5×(e+1)((1550×x4787)1000)e((1550×x4787)1000)=5×(e+1)((1550×x4787)1000)

.
 Nov 18, 2014
 #2
avatar+118703 
+5
Best Answer

0.5(1+e)4.787+1.55x=e4.787+1.55x$let$t=4.787+1.55x0.5(1+e)t=etln(0.5(1+e)t)=ln(et)ln(0.5)+ln((1+e)t)=ln(et)ln(0.5)+tln(1+e)=tln(0.5)=ttln(1+e)t=ln(0.5)t=ln(0.5)(1ln(1+e))4.787+1.55x=ln(0.5)(1ln(1+e))1.55x=ln(0.5)(1ln(1+e))+4.787

 

x=[ln(0.5)(1ln(1+e))+4.787]/1.55

Melody Nov 19, 2014

0 Online Users