5×(1+e)(−4.787+1.55×x)=e(−4.787+1.55×x)⇒e((1550×x−4787)1000)=5×(e+1)((1550×x−4787)1000)⇒e((1550×x−4787)1000)=5×(e+1)((1550×x−4787)1000)
.0.5(1+e)−4.787+1.55x=e−4.787+1.55x$let$t=−4.787+1.55x0.5(1+e)t=etln(0.5(1+e)t)=ln(et)ln(0.5)+ln((1+e)t)=ln(et)ln(0.5)+tln(1+e)=tln(0.5)=t−tln(1+e)t=ln(0.5)t=ln(0.5)(1−ln(1+e))−4.787+1.55x=ln(0.5)(1−ln(1+e))1.55x=ln(0.5)(1−ln(1+e))+4.787
x=[ln(0.5)(1−ln(1+e))+4.787]/1.55