+0  
 
+1
250
1
avatar+272 

Rewrite the expression 6j^2 - 4j + 12 in the form c(j + p)^2 + q, where c, p, and q are constants. What is q/p?

 

Quick help would be really appreciated 

WhichWitchIsWhich  Oct 23, 2017

Best Answer 

 #1
avatar+7339 
+1

6j2 - 4j + 12       Factor out a  6 .

 

=  6(j2 - 2/3j + 2)       Add and subtract  (2/6)2

 

=  6(  j2 - 2/3j + (2/6)2 + 2 - (2/6)2  )      Factor  j2 - 2/3j + (2/6)2  as a perfect square trinomial.

 

=  6(  (j - 2/6)2 + 2 - 4/36  )        Combine  2  and  -4/36 .

 

=  6(  (j - 1/3)2 +  17/9 )             Distribute the  6 .

 

=  6(j - 1/3)2 + 34/3

 

Now it is in the form  c(j + p)2 + q  ,  and  q = 34/3  and  p = -1/3  →  q/p  =  (34/3) / (-1/3)  =  -34

hectictar  Oct 23, 2017
 #1
avatar+7339 
+1
Best Answer

6j2 - 4j + 12       Factor out a  6 .

 

=  6(j2 - 2/3j + 2)       Add and subtract  (2/6)2

 

=  6(  j2 - 2/3j + (2/6)2 + 2 - (2/6)2  )      Factor  j2 - 2/3j + (2/6)2  as a perfect square trinomial.

 

=  6(  (j - 2/6)2 + 2 - 4/36  )        Combine  2  and  -4/36 .

 

=  6(  (j - 1/3)2 +  17/9 )             Distribute the  6 .

 

=  6(j - 1/3)2 + 34/3

 

Now it is in the form  c(j + p)2 + q  ,  and  q = 34/3  and  p = -1/3  →  q/p  =  (34/3) / (-1/3)  =  -34

hectictar  Oct 23, 2017

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.