+0  
 
+1
44
1
avatar+272 

Rewrite the expression 6j^2 - 4j + 12 in the form c(j + p)^2 + q, where c, p, and q are constants. What is q/p?

 

Quick help would be really appreciated 

WhichWitchIsWhich  Oct 23, 2017

Best Answer 

 #1
avatar+5237 
+1

6j2 - 4j + 12       Factor out a  6 .

 

=  6(j2 - 2/3j + 2)       Add and subtract  (2/6)2

 

=  6(  j2 - 2/3j + (2/6)2 + 2 - (2/6)2  )      Factor  j2 - 2/3j + (2/6)2  as a perfect square trinomial.

 

=  6(  (j - 2/6)2 + 2 - 4/36  )        Combine  2  and  -4/36 .

 

=  6(  (j - 1/3)2 +  17/9 )             Distribute the  6 .

 

=  6(j - 1/3)2 + 34/3

 

Now it is in the form  c(j + p)2 + q  ,  and  q = 34/3  and  p = -1/3  →  q/p  =  (34/3) / (-1/3)  =  -34

hectictar  Oct 23, 2017
Sort: 

1+0 Answers

 #1
avatar+5237 
+1
Best Answer

6j2 - 4j + 12       Factor out a  6 .

 

=  6(j2 - 2/3j + 2)       Add and subtract  (2/6)2

 

=  6(  j2 - 2/3j + (2/6)2 + 2 - (2/6)2  )      Factor  j2 - 2/3j + (2/6)2  as a perfect square trinomial.

 

=  6(  (j - 2/6)2 + 2 - 4/36  )        Combine  2  and  -4/36 .

 

=  6(  (j - 1/3)2 +  17/9 )             Distribute the  6 .

 

=  6(j - 1/3)2 + 34/3

 

Now it is in the form  c(j + p)2 + q  ,  and  q = 34/3  and  p = -1/3  →  q/p  =  (34/3) / (-1/3)  =  -34

hectictar  Oct 23, 2017

15 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details