For what values of a does the equation (a^2 + 2a)x^2 + (3a)x+2 = 0 yield no real solutions x? Express your answer in interval notation.
no real solutions
For what values of a does the equation (a^2 + 2a)x^2 + (3a)x+2 = 0 yield no real solutions x? Express your answer in interval notation.
Hello Guest!
\((a^2 + 2a)x^2 + (3a)x+2 = 0\\ \)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(x = {-3a \pm \sqrt{\color{blue}9a^2-4\cdot (a^2+2a)\cdot 2} \over 2\cdot (a^2+2a)}\) \(\color{blue}(9a^2-4\cdot (a^2+2a)\cdot 2)\ <\ 0\)
The equation has no real solutions when \(a\in \mathbb{R}\ |0\ <\ a\ <\ 16 \)
!