We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# no trig

0
430
3
+638

https://web2.0calc.com/questions/a-square-defg-varies-inside-equilateral-triangle

Can you do this without trig, my school hasn't taught it yet.

Aug 7, 2018

### Best Answer

#1
+985
+2

The first step in order to tackle this problem is to draw another square enclosing square DEFG.

First, we prove that $$WXYZ$$ is actually a square:

$$\because\overline{ED}=\overline{DG}=\overline{GF}=\overline{FE}\because\angle{Z}=\angle{Y}=\angle{YXW}=\angle{ZWX}\because\angle{DEZ}+\angle{WEF}=90º,\angle{DEZ}+\angle{ZDE}=90º\Rightarrow\angle{ZDE}=\angle{WEF}.$$

$$\text{Using the same reasoning, we get:} \angle{ZDE}=\angle{WEF}=\angle{DGY}=\angle{GFX}.$$
$$\therefore\text{By AAS congruency:} \triangle{ZDE}\cong\triangle{YGD}\cong\triangle{XFG}\cong\triangle{WEF}.$$

From this, we get

$$\overline{ZE}+\overline{EW}=\overline{ZD}+\overline{DY}=\overline{YG}+\overline{GX}=\overline{FX}+\overline{FW},$$which simplifies to $$\overline{ZW}=\overline{ZY}=\overline{YX}=\overline{XW}.$$

Therefore $$WXYZ$$ is a square.

Since $$\triangle ABC$$ is equilateral,$$\angle B=60º. \because \triangle BEW$$ is a 30-60-90 triangle, $$\frac{\overline{EW}}{\overline{BW}}=\sqrt3. \text{Same goes with } \triangle GXC, \frac{\overline{GX}}{\overline{XC}}=\sqrt3.$$
$$\text{If }\overline{EW}=x \text{ and } \overline{GX}=y,\text{ we get }\overline{BW}=\frac{x}{\sqrt3} \text{ and } \overline{XC}=\frac{y}{\sqrt3}.$$

If the equilateral triangle's side length is $$a, a=\overline{BW}+\overline{WF}+\overline{FX}+\overline{XC}=\frac{x}{\sqrt3}+y+x+\frac{y}{\sqrt3}.$$

After simplifying, we get $$x+y=\frac{3-\sqrt3}{2}a.$$

$$\because \overline{WX}=x+y \therefore x+y=\overline{DH}.$$

Since in any case, $$\overline{DH}=\frac{3-\sqrt3}{2}a,$$ the length remains consistent.

Aug 7, 2018

### 3+0 Answers

#1
+985
+2
Best Answer

The first step in order to tackle this problem is to draw another square enclosing square DEFG.

First, we prove that $$WXYZ$$ is actually a square:

$$\because\overline{ED}=\overline{DG}=\overline{GF}=\overline{FE}\because\angle{Z}=\angle{Y}=\angle{YXW}=\angle{ZWX}\because\angle{DEZ}+\angle{WEF}=90º,\angle{DEZ}+\angle{ZDE}=90º\Rightarrow\angle{ZDE}=\angle{WEF}.$$

$$\text{Using the same reasoning, we get:} \angle{ZDE}=\angle{WEF}=\angle{DGY}=\angle{GFX}.$$
$$\therefore\text{By AAS congruency:} \triangle{ZDE}\cong\triangle{YGD}\cong\triangle{XFG}\cong\triangle{WEF}.$$

From this, we get

$$\overline{ZE}+\overline{EW}=\overline{ZD}+\overline{DY}=\overline{YG}+\overline{GX}=\overline{FX}+\overline{FW},$$which simplifies to $$\overline{ZW}=\overline{ZY}=\overline{YX}=\overline{XW}.$$

Therefore $$WXYZ$$ is a square.

Since $$\triangle ABC$$ is equilateral,$$\angle B=60º. \because \triangle BEW$$ is a 30-60-90 triangle, $$\frac{\overline{EW}}{\overline{BW}}=\sqrt3. \text{Same goes with } \triangle GXC, \frac{\overline{GX}}{\overline{XC}}=\sqrt3.$$
$$\text{If }\overline{EW}=x \text{ and } \overline{GX}=y,\text{ we get }\overline{BW}=\frac{x}{\sqrt3} \text{ and } \overline{XC}=\frac{y}{\sqrt3}.$$

If the equilateral triangle's side length is $$a, a=\overline{BW}+\overline{WF}+\overline{FX}+\overline{XC}=\frac{x}{\sqrt3}+y+x+\frac{y}{\sqrt3}.$$

After simplifying, we get $$x+y=\frac{3-\sqrt3}{2}a.$$

$$\because \overline{WX}=x+y \therefore x+y=\overline{DH}.$$

Since in any case, $$\overline{DH}=\frac{3-\sqrt3}{2}a,$$ the length remains consistent.

GYanggg Aug 7, 2018
#2
+101416
+1

Very nice....!!!!

CPhill  Aug 7, 2018
#3
+985
+1

Thank you!

GYanggg  Aug 7, 2018
edited by GYanggg  Aug 7, 2018