Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1308
3
avatar+655 

https://web2.0calc.com/questions/a-square-defg-varies-inside-equilateral-triangle

 

Can you do this without trig, my school hasn't taught it yet. 

 Aug 7, 2018

Best Answer 

 #1
avatar+985 
+1

The first step in order to tackle this problem is to draw another square enclosing square DEFG.

 

First, we prove that WXYZ is actually a square: 

¯ED=¯DG=¯GF=¯FEZ=Y=YXW=ZWXDEZ+WEF=90º,DEZ+ZDE=90ºZDE=WEF.

Using the same reasoning, we get:ZDE=WEF=DGY=GFX.
By AAS congruency:ZDEYGDXFGWEF.

 

From this, we get

¯ZE+¯EW=¯ZD+¯DY=¯YG+¯GX=¯FX+¯FW,which simplifies to ¯ZW=¯ZY=¯YX=¯XW.

Therefore WXYZ is a square.

Since ABC is equilateral,B=60º.BEW is a 30-60-90 triangle, ¯EW¯BW=3.Same goes with GXC,¯GX¯XC=3.
If ¯EW=x and ¯GX=y, we get ¯BW=x3 and ¯XC=y3.

If the equilateral triangle's side length is a,a=¯BW+¯WF+¯FX+¯XC=x3+y+x+y3.

After simplifying, we get x+y=332a.

¯WX=x+yx+y=¯DH.

Since in any case, ¯DH=332a, the length remains consistent.

 Aug 7, 2018
 #1
avatar+985 
+1
Best Answer

The first step in order to tackle this problem is to draw another square enclosing square DEFG.

 

First, we prove that WXYZ is actually a square: 

¯ED=¯DG=¯GF=¯FEZ=Y=YXW=ZWXDEZ+WEF=90º,DEZ+ZDE=90ºZDE=WEF.

Using the same reasoning, we get:ZDE=WEF=DGY=GFX.
By AAS congruency:ZDEYGDXFGWEF.

 

From this, we get

¯ZE+¯EW=¯ZD+¯DY=¯YG+¯GX=¯FX+¯FW,which simplifies to ¯ZW=¯ZY=¯YX=¯XW.

Therefore WXYZ is a square.

Since ABC is equilateral,B=60º.BEW is a 30-60-90 triangle, ¯EW¯BW=3.Same goes with GXC,¯GX¯XC=3.
If ¯EW=x and ¯GX=y, we get ¯BW=x3 and ¯XC=y3.

If the equilateral triangle's side length is a,a=¯BW+¯WF+¯FX+¯XC=x3+y+x+y3.

After simplifying, we get x+y=332a.

¯WX=x+yx+y=¯DH.

Since in any case, ¯DH=332a, the length remains consistent.

GYanggg Aug 7, 2018
 #2
avatar+130474 
+1

Very nice....!!!!

 

 

cool cool cool

CPhill  Aug 7, 2018
 #3
avatar+985 
0

Thank you! smiley

GYanggg  Aug 7, 2018
edited by GYanggg  Aug 7, 2018

1 Online Users

avatar