https://web2.0calc.com/questions/a-square-defg-varies-inside-equilateral-triangle
Can you do this without trig, my school hasn't taught it yet.
The first step in order to tackle this problem is to draw another square enclosing square DEFG.
First, we prove that \(WXYZ\) is actually a square:
\( \because\overline{ED}=\overline{DG}=\overline{GF}=\overline{FE}\because\angle{Z}=\angle{Y}=\angle{YXW}=\angle{ZWX}\because\angle{DEZ}+\angle{WEF}=90º,\angle{DEZ}+\angle{ZDE}=90º\Rightarrow\angle{ZDE}=\angle{WEF}.\)
\(\text{Using the same reasoning, we get:} \angle{ZDE}=\angle{WEF}=\angle{DGY}=\angle{GFX}.\)
\(\therefore\text{By AAS congruency:} \triangle{ZDE}\cong\triangle{YGD}\cong\triangle{XFG}\cong\triangle{WEF}.\)
From this, we get
\(\overline{ZE}+\overline{EW}=\overline{ZD}+\overline{DY}=\overline{YG}+\overline{GX}=\overline{FX}+\overline{FW}, \)which simplifies to \(\overline{ZW}=\overline{ZY}=\overline{YX}=\overline{XW}.\)
Therefore \(WXYZ \) is a square.
Since \(\triangle ABC\) is equilateral,\( \angle B=60º. \because \triangle BEW\) is a 30-60-90 triangle, \(\frac{\overline{EW}}{\overline{BW}}=\sqrt3. \text{Same goes with } \triangle GXC, \frac{\overline{GX}}{\overline{XC}}=\sqrt3.\)
\(\text{If }\overline{EW}=x \text{ and } \overline{GX}=y,\text{ we get }\overline{BW}=\frac{x}{\sqrt3} \text{ and } \overline{XC}=\frac{y}{\sqrt3}.\)
If the equilateral triangle's side length is \(a, a=\overline{BW}+\overline{WF}+\overline{FX}+\overline{XC}=\frac{x}{\sqrt3}+y+x+\frac{y}{\sqrt3}.\)
After simplifying, we get \(x+y=\frac{3-\sqrt3}{2}a.\)
\(\because \overline{WX}=x+y \therefore x+y=\overline{DH}.\)
Since in any case, \(\overline{DH}=\frac{3-\sqrt3}{2}a, \) the length remains consistent.
The first step in order to tackle this problem is to draw another square enclosing square DEFG.
First, we prove that \(WXYZ\) is actually a square:
\( \because\overline{ED}=\overline{DG}=\overline{GF}=\overline{FE}\because\angle{Z}=\angle{Y}=\angle{YXW}=\angle{ZWX}\because\angle{DEZ}+\angle{WEF}=90º,\angle{DEZ}+\angle{ZDE}=90º\Rightarrow\angle{ZDE}=\angle{WEF}.\)
\(\text{Using the same reasoning, we get:} \angle{ZDE}=\angle{WEF}=\angle{DGY}=\angle{GFX}.\)
\(\therefore\text{By AAS congruency:} \triangle{ZDE}\cong\triangle{YGD}\cong\triangle{XFG}\cong\triangle{WEF}.\)
From this, we get
\(\overline{ZE}+\overline{EW}=\overline{ZD}+\overline{DY}=\overline{YG}+\overline{GX}=\overline{FX}+\overline{FW}, \)which simplifies to \(\overline{ZW}=\overline{ZY}=\overline{YX}=\overline{XW}.\)
Therefore \(WXYZ \) is a square.
Since \(\triangle ABC\) is equilateral,\( \angle B=60º. \because \triangle BEW\) is a 30-60-90 triangle, \(\frac{\overline{EW}}{\overline{BW}}=\sqrt3. \text{Same goes with } \triangle GXC, \frac{\overline{GX}}{\overline{XC}}=\sqrt3.\)
\(\text{If }\overline{EW}=x \text{ and } \overline{GX}=y,\text{ we get }\overline{BW}=\frac{x}{\sqrt3} \text{ and } \overline{XC}=\frac{y}{\sqrt3}.\)
If the equilateral triangle's side length is \(a, a=\overline{BW}+\overline{WF}+\overline{FX}+\overline{XC}=\frac{x}{\sqrt3}+y+x+\frac{y}{\sqrt3}.\)
After simplifying, we get \(x+y=\frac{3-\sqrt3}{2}a.\)
\(\because \overline{WX}=x+y \therefore x+y=\overline{DH}.\)
Since in any case, \(\overline{DH}=\frac{3-\sqrt3}{2}a, \) the length remains consistent.