+0  
 
0
580
2
avatar

nth derivative of 10^-x

Guest Aug 16, 2015

Best Answer 

 #1
avatar+90023 
+10

In general,  (d/dx) (ax)  = (ln a)* ax * (the derivative of the exponent on "a").....so......

 

(d/dx) 10-x =  ln(10)* 10-x * (-1)  = -(ln10)10-x     .....and.....

 

(d/dx) [- ln(10)* 10-x ] =  -(ln10) * (ln 10)* 10-x (-1)  =  (ln10)^2* 10-x

 

So.......the "nth" derivative would be

 

(-1)^n * (ln 10)^n * 10-x

 

 

 

CPhill  Aug 16, 2015
 #1
avatar+90023 
+10
Best Answer

In general,  (d/dx) (ax)  = (ln a)* ax * (the derivative of the exponent on "a").....so......

 

(d/dx) 10-x =  ln(10)* 10-x * (-1)  = -(ln10)10-x     .....and.....

 

(d/dx) [- ln(10)* 10-x ] =  -(ln10) * (ln 10)* 10-x (-1)  =  (ln10)^2* 10-x

 

So.......the "nth" derivative would be

 

(-1)^n * (ln 10)^n * 10-x

 

 

 

CPhill  Aug 16, 2015
 #2
avatar+20025 
+5

$$\small{\text{$\mathbf{n^{th}}$ derivative of $\mathbf{10^{-x}}$}}$$

 

 

$$\text{ \small{Formula} $
\boxed{
\begin{array}{lcl}
y &=& e^{k\cdot x} \\
y' &=& k \cdot e^{k\cdot x} \qquad y'' = k^2 \cdot e^{k\cdot x} \qquad y''' = k^3 \cdot e^{k\cdot x} \qquad \cdots \\
y^{(n)} & = & k^n \cdot e^{k\cdot x}
\end{array}
}
$} \\\\\\
\small{\text{$
\begin{array}{lcl}
y &=& 10^{-x} \qquad \Rightarrow \qquad
y = e^{-x\cdot \ln{(10)} } = e^{ \overbrace{\left[
-\ln{10} \right] }^{=\big{k}} \cdot x }\\
\end{array}
$}} \\\\
\small{\text{$
\underline{ y^{n} = k^n \cdot e^{k\cdot x} }
\qquad \underline{ k = -\ln{(10)} }
$}} \\\\
\small{\text{$
\begin{array}{lcl}
y^{(n)} &=& [-\ln{(10)} ]^n \cdot
\underbrace{ e^{ [-\ln{(10)} ]\cdot x} }_{=\big{10^{-x}}}\\\\
\mathbf{y^{(n)}} & \mathbf{=} & \mathbf{[-\ln{(10)} ]^n \cdot 10^{-x} }\\\\
\end{array}
$}} \\\\$$

 

heureka  Aug 17, 2015

14 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.