If a 7-digit number 13ab45c is divisible by 792, what is b?
Thank you so much to anyone who helps!!!
Try to find the prime factorization of 792. Then, use the prime factors, and see what restrictions the number puts.
yeah i tried that
792=8*9*11
so c=6
then, 1+3+a+b+9+6=multiple of 9
so, a+b=8 or a+b =17
for it to be divisible by 11, 1-3+a-b+4-5+6= multiple of 11, so 3+a-b= multiple of 11, which means that a-b=8 or a-b = -3.
but then i tried to plug in the equations and i got x=7 and y=10 :/
can someone please tell me what I'm doing wrong?
If a 7-digit number 13ab45c is divisible by 792, what is b?
\(\mathbf{792=2^3*3^2*11}\)
1.
\(\mathbf{13ab45c}\) is divisible by \(\mathbf{2}\), so \(c=\{2,4,6,8\}\)
2.
\(\mathbf{13ab45c}\) is divisible by \(\mathbf{2^3=8}\), so \(45c \equiv 0 \pmod{8}\)
\(\begin{array}{|c|r|c|} \hline c & 45c & 45c \pmod{8} \equiv 0\ ?\\ \hline 2 & 452 & \text{no} \\ \hline 4 & 454 & \text{no} \\ \hline \mathbf{\color{red}6} & 456 & \text{yes} \\ \hline 8 & 458 & \text{no} \\ \hline \end{array} \), so \(\mathbf{c=6}\)
3.
\(\mathbf{13ab45c}\) is divisible by \(\mathbf{3^2=9}\), so \(13ab456 \equiv 0 \pmod{9}\)
\(\begin{array}{|rcll|} \hline 1+3+a+b+4+5+6 &\equiv& 0 \pmod{9} \\ a+b+19 &\equiv& 0 \pmod{9} \quad | \quad 19 \equiv 1 \pmod{9} \\ a+b+1 &\equiv& 0 \pmod{9} \quad | \quad - 1 \\ a+b &\equiv& -1 \pmod{9} \\ a+b &\equiv& -1+9 \pmod{9} \\ \mathbf{a+b} &\equiv& \mathbf{ 8 \pmod{9} } \\ \hline \end{array}\)
\(\begin{array}{|r|r|r|r|r|r|r|r|r|r|r|} \hline \mathbf{a+b}\pmod{9}= 8 \ ? \\ b \rightarrow & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9}\\ a \downarrow \\ \hline \mathbf{0} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \color{red}8 & 0 \\ \hline \mathbf{1} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \color{red}8 & 0 & 1 \\ \hline \mathbf{2} & 2 & 3 & 4 & 5 & 6 & 7 & \color{red}8 & 0 & 1 & 2 \\ \hline \mathbf{3} & 3 & 4 & 5 & 6 & 7 & \color{red}8 & 0 & 1 & 2 & 3 \\ \hline \mathbf{4} & 4 & 5 & 6 & 7 & \color{red}8 & 0 & 1 & 2 & 3 & 4 \\ \hline \mathbf{5} & 5 & 6 & 7 & \color{red}8 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \mathbf{6} & 6 & 7 & \color{red}8 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \mathbf{7} & 7 & \color{red}8 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \mathbf{8} & \color{red}8 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7& \color{red}8 \\ \hline \mathbf{9} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7& \color{red}8 & 0 \\ \hline \end{array}\)
, so \((a,b)=\{(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(8,0),(8,9),(9,8)\}\)
4.
\(\mathbf{13ab45c}\) is divisible by \(\mathbf{11}\), so \(13ab456 \equiv 0 \pmod{11}\)
\(\begin{array}{|rcll|} \hline 1-3+a-b+4-5+6 &\equiv& 0 \pmod{11} \\ a-b+3 &\equiv& 0 \pmod{11} \quad | \quad - 3 \\ a-b &\equiv& -3 \pmod{11} \\ a-b &\equiv& -3+11 \pmod{11} \\ \mathbf{a-b} &\equiv& \mathbf{ 8 \pmod{11} } \\ \hline \end{array}\)
\(\begin{array}{|r|r|r|r|r|r|r|r|r|r|r|} \hline \mathbf{a-b}\pmod{11}= 8 \ ? \\ b \rightarrow & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9}\\ a \downarrow \\ \hline \mathbf{0} & 0 & 10 & 9 & \color{red}8 & 7 & 6 & 5 & 4 & 3 & 2 \\ \hline \mathbf{1} & 1 & 0 & 10 & 9 & \color{red}8 & 7 & 6 & 5 & 4 & 3 \\ \hline \mathbf{2} & 2 & 1 & 0 & 10 & 9 & \color{red}8 & 7 & 6 & 5 & 4 \\ \hline \mathbf{3} & 3 & 2 & 1 & 0 & 10 & 9 & \color{red}8 & 7 & 6 & 5 \\ \hline \mathbf{4} & 4 & 3 & 2 & 1 & 0 & 10 & 9 & \color{red}8 & 7 & 6 \\ \hline \mathbf{5} & 5 & 4 & 3 & 2 & 1 & 0 & 10 & 9 & \color{red}8 & 7 \\ \hline \mathbf{6} & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 10 & 9 & \color{red}8 \\ \hline \mathbf{7} & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 10 & 9 \\ \hline \mathbf{8} & \color{red}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 10 \\ \hline \mathbf{9} & 9 & \color{red}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hline \end{array}\)
, so \((a,b)=\{(0,3),(1,4),(2,5),(3,6),(4,7),(5,8),(6,9),(8,0),(9,1)\}\)
compare:
\(\mathbf{a+b}\pmod{9}= 8 : \quad (a,b)=\{(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),{\color{red}(8,0)},(8,9),(9,8)\} \\ \mathbf{a-b}\pmod{11}= 8 :\quad (a,b)=\{(0,3),(1,4),(2,5),(3,6),(4,7),(5,8),(6,9),{\color{red}(8,0)},(9,1)\}\)
,so \(a=8\) and \(b=0\)
\(\begin{array}{|lr|} \hline & \mathbf{13ab45c} = \mathbf{1380456} \\ \hline \text{check}: \\ & 1380456 : 792 = 1743 \\ \hline \end{array}\)
thank you so much!!! i see what i did wrong now. thank you for the great and clear solution!!! :)
Thanks Heureka,
Here is my contribution.
It is not much different from yours, but the explanation is maybe a little more different.
If a 7-digit number 13ab45c is divisible by 792, what is b?
\(792=8*9*11\)
For this number to be dividable by 8, the last 3 digits must be divisible by 8
456/8=57 no other digits will work so c=6
\(13ab45c\\ becomes\\ 13ab456\)
Now a number is divisible by 11 if
| (sum of even digits) - (sum of odd digits) | = multiple of 11
Sum of odd digits = 1+a+4+6 = 11+a
Sum of even digits = 3+b+5 = 8+b
absolute value of difference = | 11+a - 8-b | = |3+a-b |
so 3+a+b can be negative but it must be a multiple of 11
3+a-b = 11k where k is an integer.
\(-9\le a-b\le9\\ -6\le 3+a-b \le12\\ which\;\; means\\ 3+a-b=11\;\;or\;\;0\\ a-b=8\;\;or\;\;-3\\ a=8+b\;\;or \;\; a=-3+b\)
Now for a number to be divisible by 9, the sum of the digits must be a multiple of 9
so
\(1+3+a+b+4+5+6\\ =19+a+b\\\quad if\;\;a=8+b\;\;then\\ \\\quad =19+b+8+b\\\quad =27+2b\\ \quad b=0\;\;or\;\;9\\ b=9 \;\;doesn't \;\;work\\ so\;\; b=0,\;\;a=8 \; \text{is a possible solution}\\ ~\\ 1+3+a+b+4+5+6\\ =19+a+b\\\quad if\;\;a=-3+b\;\;then\\ \\\quad =19+b-3+b\\\quad =16+2b\\ \quad b=1,\;\;a=-2 \;\text{which is invalid}\)
If b=9 then a=17 or 6 17 is not good so
If b=9 a=-3+9=6
If b=0 a=8+0=8
So the number could be
1380456 or
1369456
So the number is
\(13ab45c= 13ab456 =1380456\\ a=8\\ b=0\\ c=6\)
LaTex:
-9\le a-b\le9\\ -6\le 3+a-b \le12\\ which\;\; means\\ 3+a-b=11\;\;or\;\;0\\ a-b=8\;\;or\;\;-3\\
a=8+b\;\;or \;\; a=-3+b
1+3+a+b+4+5+6\\ =19+a+b\\\quad if\;\;a=8+b\;\;then\\ \\\quad =19+b+8+b\\\quad =27+2b\\ \quad b=0\;\;or\;\;9\\
b=9 \;\;doesn't \;\;work\\
so\;\; b=0,\;\;a=8 \; \text{is a possible solution}\\
~\\
1+3+a+b+4+5+6\\ =19+a+b\\\quad if\;\;a=-3+b\;\;then\\ \\\quad =19+b-3+b\\\quad =16+2b\\
\quad b=1,\;\;a=-2 \;\text{which is invalid}
thank you! yeah I forgot about adding a-b=8 and a+b=8 together. thank you so much for the work you put into the clear solution! :)