Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js
 
+0  
 
+1
1111
9
avatar+738 

If a 7-digit number 13ab45c is divisible by 792, what is b?

 

Thank you so much to anyone who helps!!!

 Aug 4, 2020
 #1
avatar+1094 
+5

Try to find the prime factorization of 792. Then, use the prime factors, and see what restrictions the number puts.

 Aug 4, 2020
 #2
avatar+738 
+1

yeah i tried that

 

792=8*9*11

 

so c=6

 

then, 1+3+a+b+9+6=multiple of 9

so, a+b=8 or a+b =17

 

for it to be divisible by 11, 1-3+a-b+4-5+6= multiple of 11, so 3+a-b= multiple of 11, which means that a-b=8 or a-b = -3.

 

but then i tried to plug in the equations and i got x=7 and y=10 :/

 

can someone please tell me what I'm doing wrong?

lokiisnotdead  Aug 4, 2020
edited by lokiisnotdead  Aug 4, 2020
 #6
avatar+118703 
+1

Hi Loki,

 

Most of your logic looks spot on.

Have a look at mine and see if you can work out what is different (I have not looked that hard)

Melody  Aug 4, 2020
edited by Melody  Aug 4, 2020
 #7
avatar+1094 
+6

@lokiisnotdead, sorry for not seeing your post earlier, as I had to go to sleep. 

 

My way of doing it was similar to Melody's, so I will let her take the spotlight wink

 

:)

ilorty  Aug 4, 2020
 #3
avatar
0

1,380,456 mod 792 = 0

 Aug 4, 2020
 #4
avatar+26396 
+4

If a 7-digit number 13ab45c is divisible by 792, what is b?

 

792=233211

 

1.

13ab45c is divisible by 2, so c={2,4,6,8}

 

2.

13ab45c is divisible by 23=8, so 45c0(mod8)

c45c45c(mod8)0 ?2452no4454no6456yes8458no, so c=6

 

3.

13ab45c is divisible by 32=9, so 13ab4560(mod9)

1+3+a+b+4+5+60(mod9)a+b+190(mod9)|191(mod9)a+b+10(mod9)|1a+b1(mod9)a+b1+9(mod9)a+b8(mod9)

a+b(mod9)=8 ?b0123456789a00123456780112345678012234567801233456780123445678012345567801234566780123456778012345678801234567890123456780

, so (a,b)={(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(8,0),(8,9),(9,8)}

 

4.
13ab45c is divisible by 11, so 13ab4560(mod11)

13+ab+45+60(mod11)ab+30(mod11)|3ab3(mod11)ab3+11(mod11)ab8(mod11)

ab(mod11)=8 ?b0123456789a00109876543211010987654322101098765433210109876544321010987655432101098766543210109877654321010988765432101099876543210

, so (a,b)={(0,3),(1,4),(2,5),(3,6),(4,7),(5,8),(6,9),(8,0),(9,1)}

 

compare:

a+b(mod9)=8:(a,b)={(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(8,0),(8,9),(9,8)}ab(mod11)=8:(a,b)={(0,3),(1,4),(2,5),(3,6),(4,7),(5,8),(6,9),(8,0),(9,1)}

,so a=8 and b=0

 

13ab45c=1380456check:1380456:792=1743

 

laugh

 Aug 4, 2020
 #8
avatar+738 
+1

thank you so much!!! i see what i did wrong now. thank you for the great and clear solution!!! :)

lokiisnotdead  Aug 5, 2020
 #5
avatar+118703 
+3

Thanks Heureka, 

Here is my contribution. 

It is not much different from yours, but the explanation is maybe a little more different.

 

 

If a 7-digit number 13ab45c is divisible by 792, what is b?

 

792=8911

 

For this number to be dividable by 8, the last 3 digits must be divisible by 8

456/8=57  no other digits will work so  c=6

 

13ab45cbecomes13ab456

 

Now a number is divisible by 11 if

| (sum of even digits) - (sum of odd digits) | = multiple of 11

 

Sum of odd digits = 1+a+4+6 = 11+a

Sum of even digits = 3+b+5 = 8+b

absolute value of difference = | 11+a - 8-b | = |3+a-b |  

so 3+a+b can be negative but it must be a multiple of 11

3+a-b = 11k    where k is an integer.

9ab963+ab12whichmeans3+ab=11or0ab=8or3a=8+bora=3+b

 

 

Now for a number to be divisible by 9, the sum of the digits must be a multiple of 9

so

1+3+a+b+4+5+6=19+a+bifa=8+bthen=19+b+8+b=27+2bb=0or9b=9doesntworksob=0,a=8is a possible solution 1+3+a+b+4+5+6=19+a+bifa=3+bthen=19+b3+b=16+2bb=1,a=2which is invalid

 

If b=9 then a=17 or 6     17 is not good so

If b=9  a=-3+9=6

If b=0  a=8+0=8

 

So the number could be

1380456   or

1369456

 

So the number is

13ab45c=13ab456=1380456a=8b=0c=6

 

 

 

 

 

LaTex:

-9\le a-b\le9\\ -6\le 3+a-b \le12\\ which\;\; means\\ 3+a-b=11\;\;or\;\;0\\ a-b=8\;\;or\;\;-3\\ 
a=8+b\;\;or \;\; a=-3+b

 

1+3+a+b+4+5+6\\ =19+a+b\\\quad if\;\;a=8+b\;\;then\\ \\\quad =19+b+8+b\\\quad  =27+2b\\ \quad b=0\;\;or\;\;9\\
b=9 \;\;doesn't \;\;work\\
so\;\;   b=0,\;\;a=8 \; \text{is a possible solution}\\
~\\

1+3+a+b+4+5+6\\ =19+a+b\\\quad if\;\;a=-3+b\;\;then\\ \\\quad =19+b-3+b\\\quad  =16+2b\\
 \quad b=1,\;\;a=-2 \;\text{which is invalid}

 Aug 4, 2020
edited by Melody  Aug 4, 2020
 #9
avatar+738 
+1

thank you! yeah I forgot about adding a-b=8 and a+b=8 together. thank you so much for the work you put into the clear solution! :)

lokiisnotdead  Aug 5, 2020

1 Online Users