+0  
 
0
413
1
avatar

If we let \(f(n)\) denote the sum of all the positive divisors of the integer \(n \) , how many integers \(i \) exist such that \(1 \le i \le 2010\) and \(f(i) = 1 + \sqrt{i} + i\)?

 

I have no idea how to start on this problem

 Jul 2, 2020
edited by Guest  Jul 2, 2020
 #1
avatar
0

There are 20 integers $i$ that work.

 Aug 30, 2021

2 Online Users