+0  
 
0
6
1
avatar+303 

What is the smallest prime divisor of 5^{19} + 7^{13} + 23?

 Jul 24, 2024
 #1
avatar+1790 
+1

We can use handy tricks to solve this problem. 

Let's focus on the last digit of the sum. This will come in handy. 

 

- 5 raised to any power will end in 5

 

7's last digit follows a pattern

\(7^1  = 7 \\ 7^2 = 49 \\ 7^3  = 343\\ 7^4 = 2401\)

 

- Since it repeats in groups of 4 7^13  ends in 7

 

\(5^19 + 7^13 + 23\)    will end in  \( 5 + 7 + 3 =  5 \)

This means 2 cannot be a divisor. 

The smallest  prime divisor wil either be 3  or 5


\([5^19 + 7^13 + 23] \pmod 3  = 2 \\ [5^19 + 7613 + 23 ] \pmod 5 = 0\)

 

The smallest prime divisor is 5

 

Thanks! :)

 Jul 24, 2024
edited by NotThatSmart  Jul 24, 2024

0 Online Users