+0  
 
-1
17
1
avatar+1839 

The number $N$ is a multiple of $7$. The base $2$ representation of $N$ is
10011010011ABC110_2.
Compute the ordered triple of digits $(A,B,C)$.

 Jul 16, 2024
 #1
avatar+1897 
+1

I didn't follow an algorithm. I legit tried every single possibilitility until I found 1. 

When wee have A, B, C = 1, 0, 1, we get the number \(10011010011101110\)

Converting this into base 10, we have

\((10011010011101110)_2 = (1 × 2^{16}) + (0 × 2^{15}) + (0 × 2^{14}) + (1 × 2^{13}) + \\(1 × 2^{12}) + (0 × 2^{11}) + (1 × 2^{10}) + (0 × 2^9) + (0 × 2^8) + \\(1 × 2^7) + (1 × 2^6) + (1 × 2^5) + (0 × 2^4) + (1 × 2^3) + \\(1 × 2^2) + (1 × 2^1) + (0 × 2^0) = (79086)_{10}\)

 

Dividing by 7, we get \(79086/7=11298\)

THUS, 

The answer is \((A, B, C) = (1, 0, 1)\)

 

Thanks! :)

*I'm so tired

 Jul 16, 2024
edited by NotThatSmart  Jul 16, 2024

1 Online Users