Processing math: 100%
 
+0  
 
0
18
2
avatar+1518 

Let $m$ be a positive integer.  If $m$ has exactly $18$ positive divisors, then how many positive divisors does $m^2$ have?

 Jun 24, 2024
 #1
avatar+1950 
+1

I'm not sure how to explain the prcoess, but the smallest number with 18 positive divisors is 180

We have 1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180.

 

Now, 1802=32400

 

You could also use prime factorization, by doing

32400=24×34×52

(4+1)(4+1)(2+1)=5×5×3=75

 

Thus, our answeris 75. 

 

Thanks! :)

 Jun 24, 2024
edited by NotThatSmart  Jun 24, 2024
 #2
avatar+130477 
+1

Depends on the factorization of m

 

m =  2 * 3^8   has  (1 + 1) (8 + 1)  = 18 divisors

m^2  = [ 2 * 3^8]^2  =  2^2 * 3^16  has ( 2 + 1) (16 + 1)  =  51 divisors

 

But

m = 2^2 * 3^5  has (2+1)(5 + 1)  = 18 divisors

m^2  = [ 2^2 * 3^5]^2  = 2^4 * 3^10  has (4 + 1) (10 + 1)  =  55 divisors

 

And as  NTS pointed out, 

m = 2^2 * 3^2 * 5  has (2 + 1) (2 + 1) (1 + 1)  =18 divisors

But

(2^2 * 3^2 * 5)^2 = 2^4 * 3^4 * 5^2   has ( 4 + 1 )(4 + 1) (2 + 1)  = 75 divisors

 

cool cool cool

 Jun 24, 2024

0 Online Users