Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
436
3
avatar

N is a four-digit positive integer. Dividing N by 9 , the remainder is 5. Dividing N by 7, the remainder is 3. Dividing N by 5, the remainder is 4. What is the smallest possible value of  N?

 Jun 19, 2021
 #1
avatar+26397 
+2

n is a four-digit positive integer.
Dividing n by 9, the remainder is 5.
Dividing n by 7, the remainder is 3.
Dividing n by 5, the remainder is 4.
What is the smallest possible value of n?

 

n5(mod9)n3(mod7)n4(mod5)Let m=975=315

 

Because 9 and 7 and 5 are relatively prim (gcd(9,7,5)=1),
we can go on.

 

n=575175(mod9)+395195(mod7)+497197(mod5)+315k|kZn=175(135(mod9))+135(145(mod7))+252(163(mod5))+315k135(mod9)|351(mod9)11(mod9)135(mod9)1(mod9)145(mod7)|453(mod7)13(mod7)3ϕ(7)1(mod7)361(mod7)35(mod7)243(mod7)145(mod7)5(mod7)163(mod5)|633(mod5)13(mod5)3ϕ(5)1(mod5)341(mod5)33(mod5)27(mod5)163(mod5)2(mod5)

 

n=175(135(mod9))+135(145(mod7))+252(163(mod5))+315kn=175(1)+1355+2522+315kn=175+675+504+315kn=1004+315k|100459(mod315)n=59+315knmin.=59

 

laugh

 Jun 19, 2021
 #3
avatar+26397 
+2

The smallest possible value of n is a four-digit positive integer

 

n=59+315k59+315k>999315k>99959315k>940k>940315k>2.9841269841k=3nThe smallest possible value of n is a four-digit positive integer =59+3153n=1004

 

laugh

heureka  Jun 20, 2021
 #2
avatar+287 
+2

Isn't N a four-digit positive integer?

 Jun 20, 2021

1 Online Users