We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
131
4
avatar

What is 3^{-1}+3^{-2} mod 25? Express your answer as an integer from 0 to 24, inclusive.

 

I know that 3^{-1}=17, but what does 3^{-2} mean?

 

I had an account but lost it :(

 

Thanks in advance.

 Jul 30, 2019
edited by Guest  Jul 30, 2019
 #1
avatar+791 
+2

um nevermind..........

 Jul 30, 2019
 #2
avatar
0

Do you have any help?

Guest Jul 30, 2019
 #3
avatar
+1

OK, young person, here is my interpretation of your question:

 

3^(-1) mod 25 is the "modular multiplivative inverse of 3 mod 25".

3^(-2) =1 / 9, which can be written as 9^(-1) mod 25. So then, you have:

 

[3^(-1) + 9^(-1)] = 12^(-1) mod 25 = 23 - which is the modular multiplicative inverse of 12 mod 25.

 Jul 30, 2019
 #4
avatar+23342 
+2

What is \(3^{-1}+3^{-2} \pmod {25}\)

Express your answer as an integer from 0 to 24, inclusive.

 

\(\begin{array}{|rcll|} \hline && \mathbf{3^{-1}+3^{-2} \pmod {25}} \\\\ &\equiv& 3^{-1}+ \left(3^{-1}\right)^2 \pmod {25} \\ \hline \end{array}\)

 

Modular multiplivative inverse \(\mathbf{3^{-1}\pmod {25}}\) :

\(\begin{array}{|rcll|} \hline && \mathbf{3^{-1}\pmod {25}} \\ &\equiv& 3^{(\varphi{(25)}-1)} \pmod {25} \quad | \quad \varphi{(25)} = 20\quad \varphi(25) = 25*\left(1-\dfrac{1}{5} \right) \\ &\equiv& 3^{(20-1)} \pmod {25} \\ &\equiv& 3^{19} \pmod {25} \\ &\equiv& 1162261467 \pmod {25} \\ &\equiv&\mathbf{ 17 \pmod {25}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{3^{-1}+3^{-2} \pmod {25}} \\\\ &\equiv& 3^{-1}+ \left(3^{-1}\right)^2 \pmod {25} \\ &\equiv& 17+ 17^2 \pmod {25} \\ &\equiv& 306 \pmod {25} \\ &\equiv& \mathbf{6 \pmod {25}} \\ \hline \end{array}\)

 

 

laugh

 Jul 31, 2019
edited by heureka  Jul 31, 2019

7 Online Users

avatar
avatar
avatar