We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
44
2
avatar

This number 65^4 has a long sequence of positive consecutive 4-digit integers. The first term, the 3001st term and the last term are all 4-digit prime numbers. What is the first term, the last term and the number of terms of this sequence? Thank you for help.

 Aug 13, 2019
 #1
avatar
0

There are 1,061 primes between 1,000 and 9999.
289 of them have a difference of 3,000.
Only one of them meets the conditions of the sequence. By the process of elimination, through a computer code, the first term of the sequence =2,113. The 3001st term =2113 + 3000 =5,113. Both of these numbers are primes.
65^4 = N/2 * [2 * 2113 + (N - 1)*1, solve for N 
Using quadratic formula, we have:
N = 4,225 - This is the number of terms.
2,113 + 4,225  - 1 =6,337 - This is the last term [also a prime]
[2,113 + 6,337] / 2 * 4225 = 65^4 - This checks out. 

 Aug 14, 2019
 #2
avatar+22896 
+1

This number \(65^4\) has a long sequence of positive consecutive 4-digit integers.
The first term, the 3001st term and the last term are all 4-digit prime numbers.
What is the first term, the last term and the number of terms of this sequence?

 

\(\text{$a_1$ is a prime number hence odd } \\ \text{$a_n$ is a prime number hence odd } \)

 

\(\begin{array}{|rcll|} \hline && a_n = a_1+(n-1) \\ &or& n = a_n-a_1+1 \qquad \text{$a_n$ is odd and $a_1$ is odd hence $n$ is odd} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline 65^4 &=& a_1 + (a_1+1)+ (a_1+2) + \ldots + \Big(a_1+(n-1) \Big) \\ 65^4 &=& na_1 + \dfrac{ \Big(1+(n-1)\Big)}{2} (n-1 ) \\ 65^4 &=& na_1 + \dfrac{n(n-1)}{2} \\ 65^4 &=& n\left( a_1 + \dfrac{n-1}{2}\right) \\ 65^4 &=& n\left( \dfrac{2a_1+n-1}{2}\right) \quad | \quad n = a_n-a_1+1 \\ 65^4 &=& (a_n-a_1+1)\left( \dfrac{2a_1+a_n-a_1+1-1}{2}\right) \\ \mathbf{65^4} &=& \mathbf{(a_n-a_1+1)\left( \dfrac{ a_1+a_n }{2}\right)} \quad | \quad \text{$a_1+a_n$ is even! $\quad a_n-a_1+1=n$ is odd!} \\ \mathbf{65^4} &=& \mathbf{x\times y} \\ && \boxed{x = a_n-a_1+1},\ \boxed{y = \left( \dfrac{ a_1+a_n }{2}\right)} \quad \text{$x$ and $y$ are divisors of $65^4$ } \\\\ \hline x &=& a_n-a_1+1 \quad \text{ or } \\ \mathbf{ a_n } &=& \mathbf{x+p-1} \\\\ y &=& \left( \dfrac{ a_1+a_n }{2}\right) \\ y &=& \left( \dfrac{ a_1+x+p-1 }{2}\right)\quad \text{ or } \\ \mathbf{a_1} &=& \mathbf{y-\dfrac{x-1}{2}} \\ \hline \end{array}\)

 

The Divisors of \(65^4\) are:

\(\text{1 | 5 | 13 | 25 | 65 | 125 | 169 | 325 | 625 | 845 | 1625 | 2197 | 4225|$\\$ | 8125 | 10985 | 21125 | 28561 | 54925 | 105625 | 142805 | 274625 |$\\$ |714025 | 1373125 | 3570125 | 17850625 (25 divisors)}\)

 

\(\begin{array}{|rr|cc|cc|c|} \hline & & & \text{prime} &&\text{prime} \\ x & y & a_1 = y-\dfrac{x-1}{2} & \text{number} & a_n = x+a_1-1 & \text{number} & n =a_n-a_1+1 \\ \hline 1 & 17850625 & a_1 > 9999 \\ 5 & 3570125 & a_1 > 9999 \\ 13 &1373125 & a_1 > 9999 \\ 25 & 714025 & a_1 > 9999 \\ 65 & 274625 & a_1 > 9999 \\ 125 & 142805 & a_1 > 9999 \\ 169 & 105625 & a_1 > 9999 \\ 325 & 54925 & a_1 > 9999 \\ 625 & 28561 & a_1 > 9999 \\ 845 & 21125 & a_1 > 9999 \\ 1625 & 21125 & a_1 > 9999 \\ 2197 & 10985 & a_1=7027 & \text{yes} & a_n= 9223 & \text{no} \\ 4225 &4225& \color{red}a_1 = 2113 & \text{yes} & \color{red}a_n= 6337 & \text{yes} & \color{red}n= 4225 \\ \hline \end{array}\)

 

Here is only one solution so \(a_{3001} \)must be a prime number. \((a_{3001}=a_1+3000 = 2113+3000=5113\text{ prime number})\)

\(a_{3001} \) is irrelevant for the calculation!

 

laugh

 Aug 14, 2019

8 Online Users