Two positive integers sum up to 2247. When their digits are reversed, they sum up to 4353. How many such pairs are there? Thanks.
Hi Guest!
To solve this question, you can use case work. :))
4 digit plus 1 digit
abcd + e = 2247
*note abcd is written as 1000a + 100b + 10c + d.
dcba + e = 4353
4 digit plus 2 digit
abcd + ef = 2247
dcba + fe = 4353
4 digit plus 3 digit
abcd + efg = 2247
dcba + gfe = 4353
4 digit plus 4 digit
abcd + efgh = 2247
dcba + hgfe = 4353
Try solving these cases by yourself. I wish you best of luck. :)))
If you need help, feel free to respond and I'll try to help more.
=^._.^=
a=2247;b=1;e=a-b;if(e+b==a, goto cycle1, 0);cycle1:c=e;d=b;i=int(log(c));j=int(log(d));
;s=0;p=0;cycle: s=(c%10);p=p+(s*10^i);c=(c div 10);i--;if(c!=0, goto cycle,0);r=0;t=0;cycle2: r=(d%10);t=t+(r*10^j);d=(d div 10);j--;if(d!=0, goto cycle2,0);if(p+t==4353, goto end,goto next);end:printe,"+",b,"=",e+b;printp,"+",t,"=",p+t;print;next:e=e-1;b=b+1;if(b<=a/2, goto3, discard=0;
2234 + 13 = 2247
4322 + 31 = 4353
2104 + 143 = 2247
4012 + 341 = 4353
2093 + 154 = 2247
3902 + 451 = 4353
1983 + 264 = 2247
3891 + 462 = 4353