+0  
 
0
65
1
avatar

Let x be the smallest positive integer such that 1584 * x is a perfect cube, and let y be the smallest positive integer such that xy is a multiple of 1584. Compute y

 Feb 1, 2022
 #1
avatar+1209 
+1

1584 = 2^4 * 3^2 * 11

 

To be a perfect cube, a number's prime factors' exponents must all be multiples of 3. So, the smallest value of x is:

\(\frac{2^6 \cdot 3^3 \cdot 11^3}{2^4 \cdot 3^2 \cdot 11} = \boxed{1452}\)

 

In other terms, x = 1452 = 2^2 * 3 * 11^2. The product xy must be a multiple of 1584, so,

 

xy = 2^2 * 3 * 11^2 * y = 2^4 * 3^2 * 11 * n

 

y must have 2^2 * 3 as a factor, so the smallest value of y is 12.

 Feb 1, 2022

17 Online Users

avatar
avatar
avatar