+0  
 
0
3
1
avatar+467 

If n \equiv 43 \pmod{165}, then what is the residue of $n$ modulo 2?

 Jul 23, 2024
 #1
avatar+1790 
+1

Well, let's notice something interesting about this problem. 

The number two has only two residues. 0 and 1. 

If the number is odd, then the residue is 1. If the number is even, then the residue is 0. 

We just have to figure out whether or not \(n \equiv 43 \pmod{165}\)is even or odd. 

 

We can easily figure this out though. 

Let's note that since n is 43 mod 165, we can write n as

\(165x+43 =n\) where x is a random integer. 

 

In this case, when x is even, then n is odd. 

If x is odd, then n is even. 

 

so in turn, both residues are completely possible for the final result. 

Thus, our answer is \(0,1\)

 

Thanks! :)

 Jul 23, 2024
edited by NotThatSmart  Jul 23, 2024

5 Online Users

avatar
avatar
avatar
avatar
avatar