+0  
 
0
111
1
avatar

If m is the smallest positive integer such that m! is a multiple of 4125, and n is the smallest positive integer such that n! is a multiple of 2816000, then find n-m.

 May 14, 2022
 #1
avatar+9461 
0

Suppose that m is the smallest positive integer such that m! is a multiple of 4125.

 

First we need to take a look at what 4125 really is. 

 

\(4125 = 3 \times 5^3 \times 11\)

 

So, is 11! a multiple of 4125? No, because if you expand 11! = 11 * 10 * 9 * ... * 1, you will notice only 5 and 10 has a factor of 5, so the exponent of 5 in the prime factorization of 11! is 2, not 3. We need another multiple of 5 in the factorial so to make it 3. Therefore, m = 15.

 

Can you try to find the value of n on your own?

 May 14, 2022

7 Online Users

avatar
avatar