Processing math: 100%
 
+0  
 
-1
671
1
avatar+738 

*deleted deleted*

 Aug 5, 2020
edited by lokiisnotdead  Aug 5, 2020
 #1
avatar+26397 
+2

What is the remainder of N=1×3×5×7×...×101  when it is divided by 8?

 

So
Nx(mod8)1×3×5×7××101x(mod8)

 

11(mod8)33(mod8)55(mod8)77(mod8)91(mod8)113(mod8)135(mod8)157(mod8)171(mod8)193(mod8)215(mod8)237(mod8)251(mod8)273(mod8)295(mod8)317(mod8)891(mod8)913(mod8)935(mod8)957(mod8)871(mod8)993(mod8)1015(mod8)

 

(1×3×5×7)×(9×11×13×15)×(17×19×21×23)××(89×91×93×95)×(97×99×101)x(mod8)(1×3×5×7)×(1×3×5×7)×(1×3×5×7)××(1×3×5×7)×(1×3×5)x(mod8)(1×3×5×7)=1051(mod8)(1×3×5)=157(mod8)(1)×(1)×(1)××(1)×(7)7(mod8)

 

The remainder of N=1×3×5×7××101  when it is divided by 8 is 7

 

laugh

 Aug 5, 2020

1 Online Users