Processing math: 100%
 
+0  
 
0
383
2
avatar

N is a four-digit positive integer. Dividing N by 9 , the remainder is 5. Dividing N by 7, the remainder is 3. Dividing N by 5, the remainder is 4. What is the smallest possible value of  N?

 Jan 10, 2022
 #1
avatar+26 
0

By Chinese Remainder Theorem, there exists a unique residue (mod315) for N. Hence, all we need to do is find a possible residue, and that will be the unique residue for N when taken (mod315). By N34(mod7) and N54(mod9), we get that N4(mod63). Hence, N=63k+59 for some integer k.

 

Combining this with the last condition, we get 63k+593k+44(mod5), so 3k0(mod5). Multiplying both sides of this congruence by 2, we get that 6kk0(mod5), so hence k0(mod5). Thus, N630+5959(mod315)

 

Hence, we want to find the smallest four-digit N where N59(mod315), which gives us an answer of 3153+59=1004.

 Jan 11, 2022
edited by pogyou  Jan 11, 2022
 #2
avatar
0

LCM(9,7,5) ==315

 

LCM(3, 4, 5)==60

 

315n  + (60 - 1)==315n  +  59, where n==0, 1, 2, 3,4,........etc.

 

The smallest 4-digit integer ==[314 x 3  +  59] ==945  +  59 ==1,004

 Jan 11, 2022

3 Online Users

avatar
avatar