+0  
 
0
83
1
avatar+79 

A regular octagon withside length 4 cm is concentricwith a circle inside, If the area of the circle is equal to the area to the shaded region between the shapes, what is the radius of the circle?

 Dec 18, 2018
 #1
avatar+20831 
+4

A regular octagon withside length 4 cm is concentricwith a circle inside,

If the area of the circle is equal to the area to the shaded region between the shapes,

what is the radius of the circle?

 

\(\text{Let $s =$ octagon side length $ = 4~ cm$}\\ \text{Let $a =$ octagon apothem length}\)

 

\(\begin{array}{|rcll|} \hline A_{\bigcirc} &=& A_{\text{octagon}} - A_{\bigcirc} \\ 2A_{\bigcirc} &=& A_{\text{octagon}} \\ \mathbf{A_{\bigcirc}} &=& \mathbf{\dfrac{A_{\text{octagon}}} {2}} \\ \hline \end{array}\)

 

apothem

\(\begin{array}{|rcll|} \hline a &=& \dfrac{s}{2}\cdot \tan\left(90^{\circ}-\frac{45^{\circ}}{2} \right) \\ a &=& \dfrac{s}{2}\cdot \left(1+\sqrt{2} \right) \\\\ A_{\text{octagon}} &=& \dfrac{a \cdot s}{2} \cdot 8 \\ &=& 4as \\ &=& 4 \left( \dfrac{s}{2}\cdot \left(1+\sqrt{2} \right) \right)s \\ &=& 2 s^2 \left(1+\sqrt{2} \right) \\ \mathbf{ \dfrac{A_{\text{octagon}}} {2} } & \mathbf{=} & \mathbf{s^2 \left(1+\sqrt{2} \right)} \\ \hline \end{array} \)

 

\(\text{Let $A_{\bigcirc} = \pi r^2$ }\)

\(\begin{array}{|rcll|} \hline \mathbf{A_{\bigcirc}} &=& \mathbf{\dfrac{A_{\text{octagon}}} {2}} \\ \pi r^2 &=& s^2 \left(1+\sqrt{2} \right) \\\\ r^2 &=& \dfrac{s^2 \left(1+\sqrt{2} \right)} {\pi} \\\\ r &=& s \sqrt{ \dfrac{ 1+\sqrt{2} } {\pi} } \quad & | \quad s=4~ cm\\\\ r &=& 4 \sqrt{ \dfrac{ 1+\sqrt{2} } {\pi} } \\\\ r &=& 4 \cdot 0.87662309134 \\ r &=& 3.50649236534 \\ \mathbf{r} & \mathbf{=} & \mathbf{3.5~ cm} \\ \hline \end{array}\)

 

 

laugh

 Dec 18, 2018

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.