Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+15
342
7
avatar+1166 

All help is greatly appreciated for this problem. 

 

 

 

Let z=a+bi, where a and b are positive real numbers. If

                                                                                                      z3+|z|2+z=0,
then enter the ordered pair (a,b).

 Jul 8, 2022
 #1
avatar
0

(a,b) = (1,sqrt(3)).

 Jul 8, 2022
 #2
avatar+1166 
+11

No explanation, and it's wrong.

nerdiest  Jul 8, 2022
 #3
avatar+118703 
+3

Hi Nerdiest.  laugh

 

I just worked out each bit seperately and then put it altogether.

I have not presented it becasue it is a bit long and I no doubt made careless errors 

But I will walk you through it


z=a+biz3=a3+3a2bi+3a(bi)2+(bi)3=etc|z|2=a2+b2

 

Do the addition

The real part is 0 and the imaginary part is 0

Solve simultaneously.

 Jul 9, 2022
 #4
avatar
+2

Hi.

Given:                                                    z=a+bi

So:                           z3=(a+bi)3=a3+3a2bi3ab2b3i

Given:                                   z3+|z|2+z=0

Substitute z,z3, and we know: |z|2=a2+b22=a2+b2

a3+3a2bi3ab2b3i+(a2+b2)+a+bi=0

We equate real parts = 0 and imaginary parts = 0             (As the right-hand side is zero, this means both the real and imaginary parts are zero.) (Real parts without the "i" and imaginary parts with the "i").

So: Set Re=0:  a33ab2+a2+b2+a=0       (1)

      Set Im=0:   3a2bb3+b=0                          (2)

Given b is not equal to zero so, divide (2) by b:

 

      3a2b2+1=0

Let's make b the subject of the equation: (That is, solve for b.)

b=3a2+1

Hence, substituting b in (1) to get:

a33a(3a2+1)+a2+3a2+1+a=0   (Expand.)

a39a33a+a2+3a2+1+a=0        (Simplify.)

8a32a+4a2+1=0                               (Multiply by -1)

8a34a2+2a1=0

We can factor this by grouping:

4a2(2a1)+(2a1)=0

(2a1)(4a2+1)=0

We know that a is a positive real number.

So we only take:  a=12

Hence, b=3(0.5)2+1=74=72

Therefore, (12,72) is the desired answer.

I hope this helps :)!

 Jul 9, 2022
edited by Guest  Jul 9, 2022
 #5
avatar+118703 
+4

Incidentally, this has nothing to do with calculus.  wink

 Jul 9, 2022
 #6
avatar+1166 
+11

THANK YOU VERY MUCH MELODY AND GUEST, for I got the first insanely hard, than easy understanding question RIGHT!

 

 

THANK YOU

THANK YOU

THANK YOU

nerdiest  Jul 9, 2022
 #7
avatar+118703 
+2

You are very welcome Nerdiest :)

Melody  Jul 10, 2022

1 Online Users