+0  
 
+5
1019
9
avatar+9673 

1) Defining cosh z as \(\frac{1}{2}\left(e^z+e^{-z}\right)\), express in the form a + bi

(a) \(\cosh(5i)\)

(b) \(\cosh(2+5i)\)

 

2) Express in the form a + bi:

 \(\ln(3+4i)\)

 

3) Evaluate \(\displaystyle\int^{\pi/2}_{0}\sin^6x\cos x\mathtt{dx}\)

4) Find \(\displaystyle\int^{a}_{0}(a^2-x^2)^{5/2}\mathtt{dx}\) and \(\displaystyle\int^{a}_{0}x^2\left(a^2-x^2\right)^{5/2}\mathtt{dx}\)

 

5)Find  \(e^t\displaystyle\int^{t}_{0}\dfrac{x^n}{n!}e^{-x}\mathtt{dx}\)

 

The first 2 questions about complex number, I still have some clue for solving it, I only know that I should use Euler's relation \(e^{i\theta}=\cos \theta + i\sin \theta\), but the last 3 question about integrals...... *sigh* totally no clue in solving those :(

 

Also can anyone tell me that for a complex number z, what is \(\arg(z)\) and \(|z|\)?

 Nov 28, 2016
edited by MaxWong  Nov 28, 2016

Best Answer 

 #9
avatar+118687 
+19

Hi GerardWay

Yes, Heureka and Alan are VERY impressive !!     wink  laugh  cool

 Nov 29, 2016
 #1
avatar+33661 
+10

Here are a couple of hints:

 

3) What is d(sin7x)/dx ?

 

4) (a2 - x2)5/2 → a5(1 - (x/a)2)5/2 Let sin y = x/a

 

arg(z) and |z| are the same thing, namely the absolute value of the complex number. If 

z = a + ib then arg(z) = |z| = sqrt(a2 + b2)

 Nov 28, 2016
 #2
avatar+33661 
+10

Correction!  arg(z) is the angle formed by tan-1(b/a)

 

i.e. tan-1(imaginary component/real component)

 

.

Alan  Nov 28, 2016
 #3
avatar+33661 
+10

|z| is the magnitude, as in my original reply.

Alan  Nov 28, 2016
 #4
avatar+26393 
+5

1) Defining cosh z as , express in the form a + bi

(a) \(\cosh(5i)\)

(b) \(\cosh(2+5i)\)

 

Formula:

\(\begin{array}{|rcll|} \hline \cosh(a+i\cdot b) &=& \cosh(a) \cos(b) + i\cdot \sinh(a) \sin(b) \\ \hline \end{array} \)

 

(a)

\(\begin{array}{|rcll|} \hline \cosh(5i) \qquad a=0 \qquad b = 5 \\ \cosh(5i) &=& \underbrace{\cosh(0)}_{=1} \cos(5\cdot rad) + i\cdot \underbrace{\sinh(0)}_{=0} \sin(5\cdot rad) \\ \cosh(5i) &=& \cos(5\cdot rad) \\ \cosh(5i) &=& 0.28366218546\dots \\ \hline \end{array} \)

 

(b)

\(\begin{array}{|rcll|} \hline \cosh(2+5i) \qquad a=2 \qquad b = 5 \\ \cosh(2+5i) &=& \cosh(2)\cos(5\cdot rad) + i \cdot \sinh(2) \sin(5\cdot rad) \\ \cosh(2+5i) &=& 3.76219569108363145956\dots ~ \cdot 0.28366218546\dots \\ &+& i \cdot 3.626860407847018767668\dots (-0.95892427466) \\ \cosh(2+5i) &=& 1.067192651873\dots ~ - i \cdot 3.477884485899\dots \\ \hline \end{array} \)

 

 

laugh

 Nov 28, 2016
 #5
avatar+26393 
+5

2) Express in the form a + bi:
\(\ln(3+4i)\)

 

Formula:

\(\begin{array}{|rcll|} \hline \ln(a+i\cdot b)=\ln(\sqrt{a^2+b^2}) + i\cdot \arctan(\frac{y}{x}) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \ln(3+4i) \qquad a=3 \qquad b = 4 \\ \ln(3+4i) &=& \ln(\sqrt{3^2+4^2}) + i\cdot \arctan(\frac{y}{x}) \\ \ln(3+4i) &=& \ln(5) + i\cdot 0.92729521800\dots \\ \ln(3+4i) &=& 1.609437912434100\dots + i\cdot 0.92729521800161\dots \\ \hline \end{array}\)

 

 

 

laugh

 Nov 28, 2016
 #8
avatar+26393 
+10

Sorry, without mistakes:

 

2) Express in the form a + bi:

\(\ln(3+4i)\)

 

Formula:

\(\begin{array}{|rcll|} \hline \ln(a+i\cdot b)=\ln(\sqrt{a^2+b^2}) + i\cdot \arctan(\frac{b}{a}) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \ln(3+4i) \qquad a=3 \qquad b = 4 \\ \ln(3+4i) &=& \ln(\sqrt{3^2+4^2}) + i\cdot \arctan(\frac{4}{3}) \\ \ln(3+4i) &=& \ln(5) + i\cdot 0.92729521800\dots \\ \ln(3+4i) &=& 1.609437912434100\dots + i\cdot 0.92729521800161\dots \\ \hline \end{array}\)

 

blushlaugh

heureka  Nov 29, 2016
 #6
avatar+7 
+15

surpriseWOW HOW DO YOU EVEN DO THAT

 Nov 28, 2016
 #9
avatar+118687 
+19
Best Answer

Hi GerardWay

Yes, Heureka and Alan are VERY impressive !!     wink  laugh  cool

Melody  Nov 29, 2016
 #7
avatar+33661 
+15

Here's a way of doing the first part of 4):

 

The second integral can be done in similar fashion (though there are higher powers to deal with).  You should find the result is \(\frac{5\pi}{256}a^8\)

.

 Nov 29, 2016

1 Online Users