OMG!!! YOU WILL NOT BELEVE WHAT THE CALCULATOR GAVE ME!!!
ok, so i was just trying to simplify the function f(x)=x3-12x+2, and here's what it gave me:
\(f(x)=x^3-(12x)+2 \Rightarrow {x=(-(((sqrt(3)*i)/2))-((1/2)))*((sqrt(((f(x))^2)-(4*f(x))-252)/2)+((f(x)-2)/2))^((1/3))+((4*(((sqrt(3)*i)/2)-((1/2))))/((sqrt(((f(x))^2)-(4*f(x))-252)/2)+((f(x)-2)/2))^((1/3))), x=(((sqrt(3)*i)/2)-((1/2)))*((sqrt(((f(x))^2)-(4*f(x))-252)/2)+((f(x)-2)/2))^((1/3))+((4*(-(((sqrt(3)*i)/2))-((1/2))))/((sqrt(((f(x))^2)-(4*f(x))-252)/2)+((f(x)-2)/2))^((1/3))), x=(((sqrt(((f(x))^2)-(4*f(x))-252)/2)+((f(x)-2)/2))^((1/3)))+(4/((sqrt(((f(x))^2)-(4*f(x))-252)/2)+((f(x)-2)/2))^((1/3)))}\)
or f(x)=x^3-(12x)+2={x=(-(((sqrt(3)*i)/2))-((1/2)))*((sqrt(((f(x))^2)-(4*f(x))-252)/2)+((f(x)-2)/2))^((1/3))+((4*(((sqrt(3)*i)/2)-((1/2))))/((sqrt(((f(x))^2)-(4*f(x))-252)/2)+((f(x)-2)/2))^((1/3))), x=(((sqrt(3)*i)/2)-((1/2)))*((sqrt(((f(x))^2)-(4*f(x))-252)/2)+((f(x)-2)/2))^((1/3))+((4*(-(((sqrt(3)*i)/2))-((1/2))))/((sqrt(((f(x))^2)-(4*f(x))-252)/2)+((f(x)-2)/2))^((1/3))), x=(((sqrt(((f(x))^2)-(4*f(x))-252)/2)+((f(x)-2)/2))^((1/3)))+(4/((sqrt(((f(x))^2)-(4*f(x))-252)/2)+((f(x)-2)/2))^((1/3)))}
so... isn't that just crazy? yeah, I thought you would agree.