+0  
 
0
293
1
avatar+2766 

On the Cartesian plane, the midpoint between two points A(a,b)  and B(c,d) is M(m,n) . If A is moved vertically upwards 20 units and horizontally to the right 14 units, and B is moved vertically downwards 4 units and horizontally to the left 2 units, then the new midpoint between A and B is  \(M'\). What is the distance between \(M\) and \(M'\) ?

tertre  Dec 3, 2017
 #1
avatar+87569 
+1

Let M  =   [ ( a + c) / 2  , (b + d) / 2  ]    = (m, n)

 

A'  =  (a +14  , b + 20)       B'  =  (c - 2, d - 4)

 

So  M'  =    [ ( [a + c]  + 12) / 2   ,  ( [b + d]  + 16)/ 2 ]  =   ( m + 6, n + 8)

 

So..... the distance between M  and M'   is

 

√ [ (m + 6 - m)^2  + ( n + 8 - n)^2 ]  =  √ [  6^2 + 8^2]  = √ [36 + 64]  = √100  =

 

10 units

 

 

cool cool cool

CPhill  Dec 3, 2017

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.