We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
33
1
avatar+301 

A rectangular storage container with an open top is to have a volume of 10 m^3. The length of this base is twice the width. Material for the base costs $5 per square meter. Material for the sides costs $3 per square meter. Find the cost of materials for the cheapest such container.

 Apr 8, 2019
 #1
avatar+99580 
+2

The area of the base is   W * 2W  =  2W^2

The volume of the container = Base area * height....which implies that

10 = 2W^2 * H   ⇒    H =  10 / [ 2W^2 ]  =   5 /W^2

 

So....the total surface area is given by.....area of the base + side area  =

 

2W^2 +  2(5/W^2) [ W + 2W]   =

 

2W^2  + (10/W^2}[ 3W]  =

 

2^W^2  + 30/W

 

So....the cost, C, to be minimized is  this :

 

C =  (base cost of materials)(base area) + (side cost of materials)(side area)  

 

C = 5(2W^2)  + 3(30/W)

 

C = 10W^2  + 90/W

 

I can do this in 2 ways

 

(1) Calculus.....take the derivative of the cost....set to 0  and solve

 

So we have

 

C'  = 20W  - 90/W^2  = 0

 

20W   = 90/W^2

 

W^3  = 90/20

 

W^3  = 9/2

 

W^3 = 4.5

 

W = (4.5)^(1/3)  ≈ 1.651

 

Subbing this back into the cost function, the minimized cost is

 

C  = 10[(4.5)^(1/3)] ^2  + 90/[4.5]^(1/3)  ≈  $81.77

 

 

(2)  If you haven't had Calculus...we can use a graph here : https://www.desmos.com/calculator/e0v6iwu5bo

 

Note that the function's minimized cost is ≈  $81.77

 

 

cool cool cool

 Apr 8, 2019

6 Online Users