+0  
 
0
493
1
avatar

Find the equation algebraically, of the parabola which passes through the points (10,-14) and (-2,10), and whose axis of symmetry is the equation x=2, using vertex form.

Guest May 5, 2014

Best Answer 

 #2
avatar+94105 
+8

Find the equation algebraically, of the parabola which passes through the points (10,-14) and (-2,10), and whose axis of symmetry is the equation x=2, using vertex form.

Interesting question

(10,-14),     (1)

(-2,10)         (2)

 Vertex(2, k)     (3)

$$(x-h)^2=4a(y-k)$$     where (h,k) is the vertex

$$(x-2)^2=4a(y-k)$$  

Using (10,-14) we have $$64=4a(-14-k)$$

Using (-2,10) we have    $$16=4a(10-k)$$

 $$\frac{64}{16}=\frac{4a(-14-k)}{4a(10-k)}\\\\
4=\frac{-14-k}{10-k}\\\\
4=\frac{-14-k}{10-k}\\\\
40-4k=-14-k\\\\
54=3k\\\\
k=18$$

---------------------

$$(x-2)^2=4a(y-18)$$

  $$(10,-14) 64=4a(-32)\rightarrow -2=4a \rightarrow a=-0.5\\
check
(-2,10) 16=4a(-8)\rightarrow a=-0.5\\$$

So the equation is 

$$(x-2)^2=-2(y-18)$$

And that is that.  Can I have a thumbs up now please. OR if you don't understand ask for clarification. 

Melody  May 6, 2014
 #2
avatar+94105 
+8
Best Answer

Find the equation algebraically, of the parabola which passes through the points (10,-14) and (-2,10), and whose axis of symmetry is the equation x=2, using vertex form.

Interesting question

(10,-14),     (1)

(-2,10)         (2)

 Vertex(2, k)     (3)

$$(x-h)^2=4a(y-k)$$     where (h,k) is the vertex

$$(x-2)^2=4a(y-k)$$  

Using (10,-14) we have $$64=4a(-14-k)$$

Using (-2,10) we have    $$16=4a(10-k)$$

 $$\frac{64}{16}=\frac{4a(-14-k)}{4a(10-k)}\\\\
4=\frac{-14-k}{10-k}\\\\
4=\frac{-14-k}{10-k}\\\\
40-4k=-14-k\\\\
54=3k\\\\
k=18$$

---------------------

$$(x-2)^2=4a(y-18)$$

  $$(10,-14) 64=4a(-32)\rightarrow -2=4a \rightarrow a=-0.5\\
check
(-2,10) 16=4a(-8)\rightarrow a=-0.5\\$$

So the equation is 

$$(x-2)^2=-2(y-18)$$

And that is that.  Can I have a thumbs up now please. OR if you don't understand ask for clarification. 

Melody  May 6, 2014

26 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.