+0  
 
0
88
2
avatar

How many y-intercepts does the graph of the parabola x = -y^2 + 4y - 4 - 2y + 7 have?

 Jun 21, 2022

Best Answer 

 #2
avatar+2448 
0

Set \(x = 0\) and simplify the equation: \(0 = -y^2 + 2y + 3\)

 

We can solve for the number of solutions with the discriminant(\(b^2 - 4ac\))

 

Note that the discriminant is \(2^2 - 4 \times 3 \times -1 = 16\). Because the discriminant is positive, it will have exactly \(\color{brown}\boxed{2}\) y-intercepts. 

 Jun 21, 2022
 #1
avatar
0

The graph has one intercept.

 Jun 21, 2022
 #2
avatar+2448 
0
Best Answer

Set \(x = 0\) and simplify the equation: \(0 = -y^2 + 2y + 3\)

 

We can solve for the number of solutions with the discriminant(\(b^2 - 4ac\))

 

Note that the discriminant is \(2^2 - 4 \times 3 \times -1 = 16\). Because the discriminant is positive, it will have exactly \(\color{brown}\boxed{2}\) y-intercepts. 

BuilderBoi Jun 21, 2022

9 Online Users

avatar