Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
429
6
avatar

Find the vertex of the graph of the equation x - y^2 + 8y = 13 + 6x - 6y.

 Jul 27, 2021
 #1
avatar+37165 
+2

Need to 'massage' this around to vertex form of a parabola

x - y^2 + 8y = 13 + 6x - 6y

x - 6x = y^2 -14y+13

-5x = y^2 -14y+13     complete the square for y

-5x = ( y-7)^2 - 49 + 13

-5x = (y-7)^2 - 36

x = - 1/5 (y-7)^2 + 36/5            vertex is   7  , 36/5

 Jul 27, 2021
 #3
avatar+37165 
+1

*** edit ***

Sorry, I got the vertex coordinates backwards  (as this is a sideways parabola)

   should be   vertex =  (  36/5 , 7 )

ElectricPavlov  Jul 28, 2021
 #4
avatar+15077 
+1

x=1/5(y7)2+36/5vertex is 36/5, 7

What do you conclude that from?

laugh  !

asinus  Jul 28, 2021
 #6
avatar
0

SInce it is   x = (y-k)^2 + h       Sideways parabola

Guest Jul 28, 2021
 #2
avatar+15077 
+2

Find the vertex of the graph of the equation x - y^2 + 8y = 13 + 6x - 6y.

 

Hello Guest!

 

xy2+8y=13+6x6yx6x+6y+8yy213=0y2+14y13=5xx=f(y)=15y2+145y135

df(y)dy=0.4y+2.8=0yv=2.80.4yv=7xv=15y2+145y135

xv=1572+1457135xv=7.2

The vertex of the parabola is P [7.2, 7]

laugh  !

 Jul 27, 2021
edited by asinus  Jul 27, 2021
edited by asinus  Jul 28, 2021
 #5
avatar+118703 
+2

I might as well put my 2 cents worth in as well  laugh

 

Find the vertex of the graph of the equation x - y^2 + 8y = 13 + 6x - 6y.

 

xy2+8y=13+6x6yy2+6y+8y=13+6xxy2+14y=5x+13y214y=5x13y214y+49=5x13+49(y7)2=5x+36(y7)2=5(x+7.2)(y7)2=454(x+7.2)

 

This is a sideways parabola opening in the negative x direction.

It has a vertex of (-7.2,7)

It has a focal length of  5/4

So the focal point is  

The length of the latus r****m is 5

 

 

 

 

 

LaTex

x - y^2 + 8y = 13 + 6x - 6y\\
 -y^2+6y + 8y = 13 + 6x -x\\
- y^2+14y = 5x+13\\
 y^2-14y = -5x-13\\
 y^2-14y+49 = -5x-13+49\\
(y-7)^2 = -5x+36\\
(y-7)^2 = -5(x+7.2)\\
(y-7)^2 = -4*\frac{5}{4}(x+7.2)\\

 Jul 28, 2021

1 Online Users