+0  
 
+1
106
2
avatar

Find the equation of the line that is tangent to both of the parabolas y^2 = 4x and x^2 = -20y. Enter your answer in the form y = mx + b.

 Jun 24, 2022
 #2
avatar+14082 
+1

Find the equation of the line that is tangent to both of the parabolas y^2 = 4x and x^2 = -20y.

 

Hello Guest!

 

\(f(x)=y=\pm2\sqrt{x}\\ f'(x)=\pm\ x^{-\frac{1}{2}}\\ g(x)=y=-\frac{x^2}{20}\\ g'(x)=-\frac{x}{10}\\ f'(x)=g'(x)\\ -\frac{2x}{10}=\pm \ x^{-\frac{1}{2}}\\ \color{blue}x = \pm 4,641588833408518\\ © Arndt\ Br\ddot unner\)

\(y_f=2\cdot \sqrt{4,641588833408518}=4.30886937996\\ P_f(4,641588833408518,4.30886937996)\\ y_g=-\frac{x^2}{20}=-1.07721734492\\ P_g(-4,641588833408518,-1.07721734492)\)

\(m=\dfrac{y_f-y_g}{x_f-x_g}=\dfrac{4.30886937996-(-1.07721734492)}{4,641588833408518-(-4,641588833408518)}\\ \color{blue}m=0.580198604205\)

 

Point-direction equation of the straight line.

\(y=m(x-x_1)+y_1\\ y=0.580198604205(x-4,641588833408518)+4.30886937996\\ The\ equation\ of\ the\ line\ that\ is\ tangent\ to\ both\ of\ the\ parabolas\\ y^2 = 4x\\ and\\ x^2 = -20y\\ is\\\color{blue}y=0.5802x+1.692\)

laugh  !

 Jun 26, 2022
edited by asinus  Jun 26, 2022
edited by asinus  Jun 26, 2022
edited by asinus  Jun 26, 2022
edited by asinus  Jun 26, 2022

16 Online Users

avatar