+0  
 
0
734
3
avatar

ABCD is a rhombus. If PB=12, AB=15, and m<ABD=24, find each measure

Heres the problem:

Thanks for your help!

 Apr 5, 2015

Best Answer 

 #1
avatar+98005 
+10

23.  Using the Law of Cosines, we have

AP^2  = 15^2 + 12^2  - 2(15)(12)cos 24

AP = about 6.33

 

24. The diagonals of a rhombus bisect each other, therefore AP = PC  = 6.33

 

25. Since the diagonals bisect each other, BP = PD = 12. So, BD =24. And we can use the Law of Cosines to find AD

AD^2  = 24^2 + 15^2 - 2(24)(15)cos 24

AD  = about 11.97

So, using the Law of Sines

sin BDA / AB = sin 24 / AD

sinBDA / 15 = sin 24 / 11.97

sin-1(15 sin 24 / 11.97) = BDA = 30.64°

 

26. We can use the Law of Cosines to find ACB....note BC = AD = 11.97  and AC = 2(AP) =2(6.33) = 12.66

AB^2 = BC^2 + AC^2 - 2 - 2(BC)(AC)cosACB

15^2 = 11.97^2 + 12.66^2 - 2(11.97)(12.66)cosACB

cos-1 = (15^2 - 11.97^2 - 12.66^2) / (-2(11.97)(12.66)) = ACB = 74.98°

 

  

 Apr 5, 2015
 #1
avatar+98005 
+10
Best Answer

23.  Using the Law of Cosines, we have

AP^2  = 15^2 + 12^2  - 2(15)(12)cos 24

AP = about 6.33

 

24. The diagonals of a rhombus bisect each other, therefore AP = PC  = 6.33

 

25. Since the diagonals bisect each other, BP = PD = 12. So, BD =24. And we can use the Law of Cosines to find AD

AD^2  = 24^2 + 15^2 - 2(24)(15)cos 24

AD  = about 11.97

So, using the Law of Sines

sin BDA / AB = sin 24 / AD

sinBDA / 15 = sin 24 / 11.97

sin-1(15 sin 24 / 11.97) = BDA = 30.64°

 

26. We can use the Law of Cosines to find ACB....note BC = AD = 11.97  and AC = 2(AP) =2(6.33) = 12.66

AB^2 = BC^2 + AC^2 - 2 - 2(BC)(AC)cosACB

15^2 = 11.97^2 + 12.66^2 - 2(11.97)(12.66)cosACB

cos-1 = (15^2 - 11.97^2 - 12.66^2) / (-2(11.97)(12.66)) = ACB = 74.98°

 

  

CPhill Apr 5, 2015
 #2
avatar
+5

Not sure how to give CPhill's answer a vote or thumbs up, but thank you, very helpful! 

 Apr 6, 2015
 #3
avatar+99123 
+5

Hi anon,

You cannot give thumbs up unless you are a member. 

If you were a member you could have give CPhill 5 points:)

Why don't you join up - there are a number of plusses to be had and absolutely no negatives :)

 Apr 6, 2015

34 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar