+0  
 
0
799
2
avatar

Perform the indicated operations and simplify the expression.

(x^(1\/4) + 1)(1/4 x^(- 1\/4)) - (x^(1\/4) - 1)( 1/4 x^(- 1\/4))
 Feb 24, 2015

Best Answer 

 #2
avatar+99377 
+5

$$\frac{1}{2}x^{-1/4}=\frac{1}{2x^{0.25}}=\frac{1}{2\sqrt[4]{x}}$$

.
 Feb 24, 2015
 #1
avatar+21869 
+5

Perform the indicated operations and simplify the expression.

(x^(1\/4) + 1)(1/4 x^(- 1\/4)) - (x^(1\/4) - 1)( 1/4 x^(- 1\/4))

$$\small{\text{
$
\left( x^{\frac{1}{4}} + 1 \right)
\cdot
\textcolor[rgb]{1,0,0}{\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)}
-
\left( x^{\frac{1}{4}} - 1 \right)
\cdot
\textcolor[rgb]{1,0,0}{\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)}
$}}\\
\small{\text{
$
=
\textcolor[rgb]{1,0,0}{\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)}
\cdot
\left[
\left( x^{\frac{1}{4}} + 1 \right)
-
\left( x^{\frac{1}{4}} - 1 \right)
\right]
$}}\\\\
\small{\text{
$
=
\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)
\cdot
\left(
\not{x^{\frac{1}{4}}} + 1
- \not{x^{\frac{1}{4}}} + 1
\right)
$}}\\\\
\small{\text{
$
=\left( \dfrac{2}{4}x^{-\frac{1}{4}} \right)
$}}\\\\
\small{\text{
$
=\left( \dfrac{1}{2}x^{-\frac{1}{4}} \right)
$}}$$

.
 Feb 24, 2015
 #2
avatar+99377 
+5
Best Answer

$$\frac{1}{2}x^{-1/4}=\frac{1}{2x^{0.25}}=\frac{1}{2\sqrt[4]{x}}$$

Melody Feb 24, 2015

11 Online Users

avatar
avatar
avatar