+0  
 
0
616
2
avatar

Perform the indicated operations and simplify the expression.

(x^(1\/4) + 1)(1/4 x^(- 1\/4)) - (x^(1\/4) - 1)( 1/4 x^(- 1\/4))
Guest Feb 24, 2015

Best Answer 

 #2
avatar+92775 
+5

$$\frac{1}{2}x^{-1/4}=\frac{1}{2x^{0.25}}=\frac{1}{2\sqrt[4]{x}}$$

Melody  Feb 24, 2015
 #1
avatar+19620 
+5

Perform the indicated operations and simplify the expression.

(x^(1\/4) + 1)(1/4 x^(- 1\/4)) - (x^(1\/4) - 1)( 1/4 x^(- 1\/4))

$$\small{\text{
$
\left( x^{\frac{1}{4}} + 1 \right)
\cdot
\textcolor[rgb]{1,0,0}{\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)}
-
\left( x^{\frac{1}{4}} - 1 \right)
\cdot
\textcolor[rgb]{1,0,0}{\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)}
$}}\\
\small{\text{
$
=
\textcolor[rgb]{1,0,0}{\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)}
\cdot
\left[
\left( x^{\frac{1}{4}} + 1 \right)
-
\left( x^{\frac{1}{4}} - 1 \right)
\right]
$}}\\\\
\small{\text{
$
=
\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)
\cdot
\left(
\not{x^{\frac{1}{4}}} + 1
- \not{x^{\frac{1}{4}}} + 1
\right)
$}}\\\\
\small{\text{
$
=\left( \dfrac{2}{4}x^{-\frac{1}{4}} \right)
$}}\\\\
\small{\text{
$
=\left( \dfrac{1}{2}x^{-\frac{1}{4}} \right)
$}}$$

heureka  Feb 24, 2015
 #2
avatar+92775 
+5
Best Answer

$$\frac{1}{2}x^{-1/4}=\frac{1}{2x^{0.25}}=\frac{1}{2\sqrt[4]{x}}$$

Melody  Feb 24, 2015

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.