+0

# Perform the indicated operations and simplify the expression.

0
799
2

Perform the indicated operations and simplify the expression.

Feb 24, 2015

#2
+99377
+5

$$\frac{1}{2}x^{-1/4}=\frac{1}{2x^{0.25}}=\frac{1}{2\sqrt[4]{x}}$$

.
Feb 24, 2015

#1
+21869
+5

Perform the indicated operations and simplify the expression.

$$\small{\text{  \left( x^{\frac{1}{4}} + 1 \right) \cdot {\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)} - \left( x^{\frac{1}{4}} - 1 \right) \cdot {\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)} }}\\ \small{\text{  = {\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)} \cdot \left[ \left( x^{\frac{1}{4}} + 1 \right) - \left( x^{\frac{1}{4}} - 1 \right) \right] }}\\\\ \small{\text{  = \left( \dfrac{1}{4}x^{-\frac{1}{4}} \right) \cdot \left( \not{x^{\frac{1}{4}}} + 1 - \not{x^{\frac{1}{4}}} + 1 \right) }}\\\\ \small{\text{  =\left( \dfrac{2}{4}x^{-\frac{1}{4}} \right) }}\\\\ \small{\text{  =\left( \dfrac{1}{2}x^{-\frac{1}{4}} \right) }}$$

.
Feb 24, 2015
#2
+99377
+5
$$\frac{1}{2}x^{-1/4}=\frac{1}{2x^{0.25}}=\frac{1}{2\sqrt[4]{x}}$$