+0  
 
0
553
2
avatar

Perform the indicated operations and simplify the expression.

(x^(1\/4) + 1)(1/4 x^(- 1\/4)) - (x^(1\/4) - 1)( 1/4 x^(- 1\/4))
Guest Feb 24, 2015

Best Answer 

 #2
avatar+92198 
+5

$$\frac{1}{2}x^{-1/4}=\frac{1}{2x^{0.25}}=\frac{1}{2\sqrt[4]{x}}$$

Melody  Feb 24, 2015
Sort: 

2+0 Answers

 #1
avatar+19207 
+5

Perform the indicated operations and simplify the expression.

(x^(1\/4) + 1)(1/4 x^(- 1\/4)) - (x^(1\/4) - 1)( 1/4 x^(- 1\/4))

$$\small{\text{
$
\left( x^{\frac{1}{4}} + 1 \right)
\cdot
\textcolor[rgb]{1,0,0}{\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)}
-
\left( x^{\frac{1}{4}} - 1 \right)
\cdot
\textcolor[rgb]{1,0,0}{\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)}
$}}\\
\small{\text{
$
=
\textcolor[rgb]{1,0,0}{\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)}
\cdot
\left[
\left( x^{\frac{1}{4}} + 1 \right)
-
\left( x^{\frac{1}{4}} - 1 \right)
\right]
$}}\\\\
\small{\text{
$
=
\left( \dfrac{1}{4}x^{-\frac{1}{4}} \right)
\cdot
\left(
\not{x^{\frac{1}{4}}} + 1
- \not{x^{\frac{1}{4}}} + 1
\right)
$}}\\\\
\small{\text{
$
=\left( \dfrac{2}{4}x^{-\frac{1}{4}} \right)
$}}\\\\
\small{\text{
$
=\left( \dfrac{1}{2}x^{-\frac{1}{4}} \right)
$}}$$

heureka  Feb 24, 2015
 #2
avatar+92198 
+5
Best Answer

$$\frac{1}{2}x^{-1/4}=\frac{1}{2x^{0.25}}=\frac{1}{2\sqrt[4]{x}}$$

Melody  Feb 24, 2015

3 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details