+0  
 
+4
382
3
avatar

Find the line perpendicular to y=3x-7 that goes through (3,5)

Guest Nov 16, 2015

Best Answer 

 #1
avatar+19482 
+25

Find the line perpendicular to y=3x-7 that goes through (3,5)

 

\(\begin{array}{rcl} \text{Formula } \boxed{~ \begin{array}{lrcl} y = mx+b \\\\ \dfrac{y-y_p}{x-x_p} = m_{\text{perpendicular}} \\ m_{\text{perpendicular}} = -\frac{1}{m} \end{array} ~}\\\\ \end{array}\\ \begin{array}{rcl} P(x_p,y_p) &=& (3,5) \\\\ y = 3x-7 \qquad m = 3 \\ m_{\text{perpendicular}} = -\frac{1}{m} &=& -\frac{1}{3} \\ \dfrac{y-y_p}{x-x_p} = \dfrac{y-5}{x-3} &=& -\frac{1}{3} \\ y-5 &=& -\frac{1}{3}\cdot (x-3) \\ y-5 &=& -\frac{x}{3}+1 \\ y &=& -\frac{x}{3}+1+5 \\ y &=& -\frac{x}{3}+6 \\ \end{array}\\\)

laugh

heureka  Nov 16, 2015
 #1
avatar+19482 
+25
Best Answer

Find the line perpendicular to y=3x-7 that goes through (3,5)

 

\(\begin{array}{rcl} \text{Formula } \boxed{~ \begin{array}{lrcl} y = mx+b \\\\ \dfrac{y-y_p}{x-x_p} = m_{\text{perpendicular}} \\ m_{\text{perpendicular}} = -\frac{1}{m} \end{array} ~}\\\\ \end{array}\\ \begin{array}{rcl} P(x_p,y_p) &=& (3,5) \\\\ y = 3x-7 \qquad m = 3 \\ m_{\text{perpendicular}} = -\frac{1}{m} &=& -\frac{1}{3} \\ \dfrac{y-y_p}{x-x_p} = \dfrac{y-5}{x-3} &=& -\frac{1}{3} \\ y-5 &=& -\frac{1}{3}\cdot (x-3) \\ y-5 &=& -\frac{x}{3}+1 \\ y &=& -\frac{x}{3}+1+5 \\ y &=& -\frac{x}{3}+6 \\ \end{array}\\\)

laugh

heureka  Nov 16, 2015
 #2
avatar
0

That Is Wrong 

Guest Nov 16, 2015
edited by Guest  Nov 16, 2015
 #3
avatar+26718 
+12

heureka has given the correct answer to the question that was asked.

 

If you think it is wrong you need to say why.

Alan  Nov 16, 2015

17 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.