We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Perpendicular Lines?

0
279
7 Okay so I found the derivative of f(x) which is f'(x) = -2x+3. Then I set it equal to the function y and found the point of intersection. So that was the answer for a as I'm guessing

Then for b I used that Point of intersection and the perpendicular slope of 1/3x+2 which is -3 and found the equation of the line. I feel I'm doing something wrong though...

Mar 3, 2018

### 7+0 Answers

#1
+2

Hopefully Chris is doing the math and comes up with the same answer I calculated...here is my graph Mar 3, 2018
#2
+2

NVM.....EP has the correct answer!!!!   Mar 3, 2018
edited by CPhill  Mar 3, 2018
#3
+2

Ok    -2x +3   gives the SLOPE of the parabola at any point x

We want the slope to be -3   (negative inverse of 1/3.....the slope of the line)

so   -2x+3 = -3    yields  x = 2 is where the tangent line is slope -3

Sustitute x= 2 into the ORIGINAL equation to find y = 2

Now find the line  given slope = -3   and point  3,2

y= mx+b

2= -3(3  ) + b       so b = 11

y = -3x + 11      (see graph)

Mar 3, 2018
#4
+1

Nice, EP  !!!!   CPhill  Mar 3, 2018
#5
+2

Thanx, CP.......once in a while I don't make an error!   Haha ElectricPavlov  Mar 3, 2018
#6
0

I'm a bit confused on how there is a point 3,2. :|

Mar 4, 2018
#7
+2

The question is...

What are the coordinates of the point on the graph of  f(x)  where the slope of f(x)  =  -3  ?

the slope of f(x) at any  x  value  =  f'(x)  =  -2x + 3

What  x  value makes the slope of f(x) be  -3  ?

What  x  value makes  f'(x)  be  -3 ?

f'(x)  =  -3

-2x + 3  =  -3

-2x  =  -6

x  =  3

When  x = 3 ,  the slope of f(x)  =  -3

When  x = 3 ,  f(x)  =   f(3)  =  2

So at the point  (3, 2) , the slope of  f(x)  is  -3 .

Mar 4, 2018
edited by hectictar  Mar 4, 2018