Processing math: 100%
 
+0  
 
0
1
3766
2
avatar

A tungsten wire has a radius of 0.073 mm and is heated from 20.0 to 1500 °C. The temperature coefficient of resistivity is α = 4.5 10-3 (C°)−1. When 110 V is applied across the ends of the hot wire, a current of 1.6 A is produced. How long is the wire? Neglect any effects due to thermal expansion of the wire.

physics
 Apr 29, 2016

Best Answer 

 #1
avatar+33654 
+10

Resistance of wire at 1500°C is  R = 110V/1.6A  or  R = 68.75 ohms 

 

Electrical resistivity of tungsten at 20°C is  rho20 = 5.5*10-8 ohm.m 

 

Electrical resistivity of tungsten at 1500°C is  rho1500 = rho20*(1 + alpha*deltaT)

                                                                       rho1500 = 5.5*10-8*(1 + 4.5*10-3*(1500-20)) = 4.213*10-7 ohm.m

 

Length of tungsten wire at 1500°C  L = rho1500/R  or  L = 4.213*10-7 ohm.m/68.75ohms  ≈  6*10-9 m

 

 

Hmm!  Seems very short!  Someone needs to check this.

 Apr 30, 2016
 #1
avatar+33654 
+10
Best Answer

Resistance of wire at 1500°C is  R = 110V/1.6A  or  R = 68.75 ohms 

 

Electrical resistivity of tungsten at 20°C is  rho20 = 5.5*10-8 ohm.m 

 

Electrical resistivity of tungsten at 1500°C is  rho1500 = rho20*(1 + alpha*deltaT)

                                                                       rho1500 = 5.5*10-8*(1 + 4.5*10-3*(1500-20)) = 4.213*10-7 ohm.m

 

Length of tungsten wire at 1500°C  L = rho1500/R  or  L = 4.213*10-7 ohm.m/68.75ohms  ≈  6*10-9 m

 

 

Hmm!  Seems very short!  Someone needs to check this.

Alan Apr 30, 2016
 #2
avatar+1038 
+10

Solution:

 

 

R=110V1.6A=68.75 ohmsρ20=55.0109ΩMα=Temperature coefficient for tungsten=0.0045K1(K1C1)ρ1500=(ρ20)[1+(αΔT)]ρ1500=(55.0109)(1+0.0045C1)(150020)C=8.287125105MΩAc=(πr2)=π(0.073106)2=1.67415473108M2(Area cross-section)

 

R=ρ(LA)Solve for length L. L=RA(ρ20[1+αΔT])(68.75)(16.7415473109)(55.0109)(1+[0.00451480])=2.73198 Meters

 May 1, 2016

3 Online Users

avatar
avatar
avatar