Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
885
2
avatar

Wagon in the figure can roll down the hill without friction. When the outpot speed (Vo) is 0 m/s and the end speed (v) is 4m/s

 

How high is the hill? 

 

[WAGON] Vo = 0m/s

                           _

                                    _      

                                                  _ 

                                                                    _           [WAGON] Vo =4m/S

 May 9, 2017
 #1
avatar+15077 
+1

Wagon in the figure can roll down the hill without friction. When the outpot speed (Vo) is 0 m/s and the end speed (v) is 4m/s

How high is the hill?

 

E=m2(v2v2o)=mgh

 

v2v20=2gh

 

(4ms)2=29.81ms2h

 

h=16m2s2/29.81ms2 

 

h=16m2s229.81ms2

 

h=0.815 m

 

The hill is 0.815 m high.

 

laugh  !

 May 9, 2017
edited by asinus  May 9, 2017
 #2
avatar+33654 
+2

Use conservation of energy:

 

potential energy at the top = m*g*h   where m is mass, g is acceleration of gravity and h is height.

 

kinetic energy at the bottom = (1/2)mv2    where v is velocity

 

Equating the two we get

 

gh = (1/2)v2    or   h = (1/2)v2/g

 

You can crunch the numbers!

 

Looks like asinus has already crunched the numbers for you!

 May 9, 2017
edited by Alan  May 9, 2017

1 Online Users

avatar