+0  
 
0
782
2
avatar+117 

I'm  having trouble understanding how to solve this equation. Could anyone please help me solve this problem? 

 

A little ball made of steel is dropped from a height. The speed of the ball kan be described with the formula v(t) = 0.028 m/s * (1-e ^ -300s-1*t) 

 

a) Find the terminal speed 

b) Find acceleration and the position of the ball (a(t) + s(t) ) I think 

physics
 Sep 13, 2015

Best Answer 

 #1
avatar+33657 
+10

I'm going to assume you mean the velocity as a function of time is  \(v(t)=0.028(1-e^{-300t})\)

where t is in seconds and velocity is in m/s.

 

a)  Terminal velocity will be when t is infinite, so e^(-300t) → 0 and vterminal → 0.028 m/s 

 

b) Acceleration:   \(a(t)=\frac{dv(t)}{dt}\quad a(t)=300\times0.028e^{-300t}\rightarrow8.4e^{-300t}\)  acceleration will be in m/s^2

    Position:         \(s(t)=\int v(t)dt\quad s(t)=0.028(t+\frac{e^{-300t}}{300})+s(0)\) where s(0) is position at time 0.

 Sep 13, 2015
 #1
avatar+33657 
+10
Best Answer

I'm going to assume you mean the velocity as a function of time is  \(v(t)=0.028(1-e^{-300t})\)

where t is in seconds and velocity is in m/s.

 

a)  Terminal velocity will be when t is infinite, so e^(-300t) → 0 and vterminal → 0.028 m/s 

 

b) Acceleration:   \(a(t)=\frac{dv(t)}{dt}\quad a(t)=300\times0.028e^{-300t}\rightarrow8.4e^{-300t}\)  acceleration will be in m/s^2

    Position:         \(s(t)=\int v(t)dt\quad s(t)=0.028(t+\frac{e^{-300t}}{300})+s(0)\) where s(0) is position at time 0.

Alan Sep 13, 2015
 #2
avatar+117 
0

Thank you so much!! 

 Sep 13, 2015

0 Online Users