+0  
 
0
784
1
avatar

Find the length of a pendulum that oscillates with a frequency of 0.19 Hz. The acceleration due to gravity is 9.81 m/s 2 .

Guest Apr 3, 2017
 #1
avatar+19653 
+3

Find the length of a pendulum that oscillates with a frequency of 0.19 Hz.

The acceleration due to gravity is 9.81 m/s 2 .

 

Formula:

For small amplitudes, the period of such a pendulum can be approximated by:

\(\begin{array}{|lrcll|} \hline & T &=& 2\pi\sqrt{\frac{L}{g}} \\ \qquad L~ \text{expresses the pendulum length in meters } \\ \qquad g~ \text{expresses the acceleration of gravity}\approx 9.81 \frac{m}{s^2} \\ & T &=& \frac{1}{f} \\ \qquad f~ \text{expresses the frequency in Hz} \\ \hline \end{array} \)

\(\begin{array}{|rcll|} \hline \frac{1}{f} &=& 2\pi\sqrt{\frac{L}{g}} \\ \frac{1}{2\pi f} &=& \sqrt{\frac{L}{g}} \\ \Big(\frac{1}{2\pi f}\Big)^2 &=& \frac{L}{g} \\ L &=& g\cdot \Big(\frac{1}{2\pi f}\Big)^2 \\ L &=& 9.81\cdot \left(\frac{1}{2\pi\cdot 0.19}\right)^2 \\ L &=& 9.81\cdot \left(0.83765759522\right)^2 \\ L &=& 9.81\cdot 0.70167024683 \\ \mathbf{L} &\mathbf{=}& \mathbf{6.88338512141\ m} \\ \hline \end{array}\)

 

 The length of the pendulum is 6.88 m

 

laugh

heureka  Apr 3, 2017

9 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.