+0  
 
0
201
1
avatar

580 nm light shines on a double slit with d=0.000125 m. What is the angle of the third dark interference minimum(m=3)? 

\(dsin\theta=m\lambda \)

Guest Mar 13, 2017
 #1
avatar+19653 
+5

580 nm light shines on a double slit with d=0.000125 m.
What is the angle of the third dark interference minimum(m=3)?


\(\begin{array}{rcll} Let\ d &=& 0.000125\ m \\ d &=& 125 \cdot 10^{-6}\ m \\\\ Let\ \lambda &=& 580\ nm \\ \lambda &=& 580 \cdot 10^{-9}\ m \\ \end{array} \)

 

\(\begin{array}{|rcll|} \hline d\sin(\theta) &=& m \lambda \\ \sin(\theta) &=& m\cdot \frac{\lambda}{d} \quad & | \quad m=3 \\ \sin(\theta) &=& 3\cdot \frac{580 \cdot 10^{-9}\ m }{125 \cdot 10^{-6}\ m} \\ \sin(\theta) &=& 3\cdot \frac{580}{125} \cdot 10^{-9+6} \\ \sin(\theta) &=& \frac{1740}{125} \cdot 10^{-3} \\ \sin(\theta) &=& 13.92 \cdot 10^{-3} \\ \sin(\theta) &=& 0.01392 \\ \theta &=& \arcsin(0.01392) \\ \theta &=& 0.79758300970^{\circ} \\ \hline \end{array} \)

 

laugh

heureka  Mar 14, 2017

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.