+0  
 
+1
23
5
avatar+1720 

4. A rocket experiences an acceleration of 4 m/s^2 . How far has it traveled when it reaches 50 m/s?

I believe distance= 312.5 m

5. Your car has a maximum deceleration of 5 m/s^2 . What is your stopping distance if you were to slam on the brakes going 20 m/s?

Not sure how to solve this one >.<

I have to use this formula: vf^2=vi^2+2ad

vf=final velocity

vi=initial velocity

a=acceleration

d=distance

 
RainbowPanda  Sep 13, 2018
 #1
avatar+12679 
+3

x=xo+ vot + 1/2 at^2       xo = 0    vo=0    a = 4

v=vo + at     v=50 m/s   vo=0    a = 4 m/s^2        solve for t =  12.5 s

 

x = 0 + 0 + 1/2 (4)(12.5)^2  =  312.5 m     You got it! (Well.....at least we both arrived at the same answer!)

 
ElectricPavlov  Sep 13, 2018
edited by Guest  Sep 13, 2018
 #2
avatar+1720 
+1

Thanks :)

 
RainbowPanda  Sep 13, 2018
 #5
avatar+12679 
+2

v=0 when car stops

v=vo + at       vo= 20 m/s    a=-5 m/s^2

0=20 +(-5)t

t= 4 seconds

x=xo + vot + 1/2 at^2

x = 0 + 20(4) + 1/2 (-5)(4)^2

    =  80 + (-40)= 40 m       (as Chris found) 

 
ElectricPavlov  Sep 13, 2018
 #3
avatar+88775 
+2

Not great at Physics, but I'll give it a shot

 

 

vf^2  = vi^2 + 2ad

 

vi  = initial velocity  = 0....so we have

 

(50m/s)^2  =  0    + 2 (4m/s^2) * d

 

2500m^2 / s^2  =   8 m/s^2  * d          divide both sides by  8m/s^2

 

[2500m^2/ s*2]  / [ 8m /s^2]   = d   =  312.5 m  ......correct  !!!

 

 

Second one

 

vi  = 20m/s

vf  = 0   [ we are stopped at the end ]

a  = -5m/s^2   [ we are slowing down ]

 

 

So

 

0  =  [20m/s]^2  + 2(-5m/s^2) * d

 

0 =  400m^2 / s^2     - 10 m/s^2 * d       multiply through by  s^2

 

0  = 400m^2  - 10m  * d

 

10m * d  =  400m^2        divide both sides by 10m

 

d  = 400m^2  / 10m   =  40 m  = stopping distance

 

 

cool cool cool

 
CPhill  Sep 13, 2018
 #4
avatar+1720 
+1

Thank you so much!

 
RainbowPanda  Sep 13, 2018

26 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.