+0  
 
0
680
2
avatar+310 

Let \(p(x)\) be defined on \(2 \le x \le 10\) such that

\(p(x) = \begin{cases} x + 1 &\quad \lfloor x \rfloor\text{ is prime} \\ p(y) + (x + 1 - \lfloor x \rfloor) &\quad \text{otherwise} \end{cases}\)

where \(y\) is the greatest prime factor of \(\lfloor x\rfloor.\) Express the range of \(p\) in interval notation.

 Jun 30, 2020
 #1
avatar
0

The function gets bumped up at every prime values, so the range of p is [2,5] U [8,9].

 Jun 30, 2020
 #2
avatar+310 
0

Sorry, that's incorrect. Can you expand more behind your reasoning so I can attempt your method myself? 

thelizzybeth  Jun 30, 2020

0 Online Users