We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

For all complex numbers z, let \(f(z) = \left\{ \begin{array}{cl} z^{2}&\text{ if }z\text{ is not real}, \\ -z^2 &\text{ if }z\text{ is real}. \end{array} \right.\)

Find \(f(f(f(f(1+i))))\).

Lightning Aug 20, 2018

#1**+1 **

Let's define \(z_0=1+i\). Then we want to find \(f(f(f(f(z_0))))\).

z is not real, so we have\( f(z_0)=z_0^2=(1+i)^2=1+2i+i^2=1+2i-1=2i\).

So \(f(z_0)=2i\) is not real either, and therefore \( f(f(z_0))=f(z_0)^2=(2i)^2=-4.\)

Now things change, because \(f(f(z_0))=-4\) is real and so \(f(f(f(z_0)))=-(-4)^2=-16\).

This is still real, so we have finally:

\(f(f(f(f(z_0))))=-(-16)^2=-256\)

.Guest Aug 20, 2018